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Overview

1 Diameter and Circuit Diameter of Polyhedra

2 Circuit Imbalance Measure κ

3 Main Results:

• Circuit diameter bounds in terms of κ

• Circuit augmentation algorithms for LP (runtime in
terms of κ)

4 Conclusion and Future Directions



Linear Programming

• Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn,

(Primal) min c>x

s. t. Ax = b

x ≥ 0

(Dual) max b>y

s. t. A>y ≤ c

• n variables, m constraints, LA,b,c encoding length of the input

• Ellipsoid and Interior Point Methods run in poly(n,m, LA,b,c) time.

• For Simplex Method, no polynomial pivot rule is known.

Smale’s 9th Question: Is there a strongly polynomial
algorithm for LP? (runs in poly(n,m) arithmetic operations
using poly(n,m, LA,b,c) space.)



Simplex Method and Diameter

• Consider the polyhedron

P = {x : Ax = b, x ≥ 0}.

• The diameter of P is the max # of edges in a
shortest path between any 2 vertices.

• Diameter ≤ # of simplex pivots.

Hirsch’s Conjecture: The diameter of a d-dimensional polyhedron with
f facets is ≤ f − d .

I Disproved by Santos in 2012.

I Polynomial version (≤ poly(f )) is still open.

• Quasi-polynomial upper bound known [Kalai–Kleitman ’92], [Todd ’14].
Current best bound: (f − d)logO(d/ log d) [Sukegawa ’18].



Circuit Diameter

• For W = ker(A), g ∈W \ {0} is a circuit if @ h ∈W \ {0} such that

supp(h) ( supp(g).

• Circuits are all possible edge directions of P when varying b.

• A circuit walk is a sequence of points x (1), x (2), . . . , x (k) in P where
x (t+1) is obtained from x (t) by moving along a circuit maximally.

• The circuit diameter of P is the max # of steps
in a shortest circuit walk between any 2 vertices.

• Circuit diameter ≤ diameter.

opt

−c

Circuit Hirsch’s Conjecture [Borgwardt, Finhold, Hemmecke ’15]: The
circuit diameter of a d-dimensional polyhedron with f facets is ≤ f − d .



Goals

1 Upper bound the circuit diameter of P .

2 Give an efficient circuit augmentation algorithm for solving

min{c>x : x ∈ P}.



State of the Art

• Circuit diameter of combinatorial polyhedra:

I Dual transportation polyhedra [Borgwardt, Finhold, Hemmecke ’15].

I Matching, travelling salesman and fractional stable set polytopes
[Kafer, Pashkovich, Sanità ’19].

• Circuit augmentation algorithms in network flow:

I Edmonds–Karp–Dinic algorithm for max flow.

I Min-mean cycle canceling for min-cost flow [Goldberg–Tarjan ’89].

I Min-ratio cycle canceling for min-cost flow [Wallacher ’89].

I All extended to LP [Bland ’76], [Gauthier–Desrosiers ’21], [Ekbatani,
Natura, Végh ’21], [McCormick–Shioura ’00].

• Other circuit augmentation rules [De Loera, Hemmecke, Lee ’15].

• Circuit augmentation on 0/1-polytopes [De Loera, Kafer, Sanità ’19].



Circuit Imbalance Measure

• For W = ker(A), the circuit imbalance measure is

κW = max

{∣∣∣∣gigj
∣∣∣∣ : i , j ∈ supp(g), g circuit in W

}
.

• κW = κW⊥ .

• If A is totally unimodular, then κW = 1.

• For integral A with max subdeterminant ∆,
κW ≤ ∆.

I E.g., if A is the incidence matrix of Kn,
then κW ≤ 2 and 2bn/3c ≤ ∆ because

det

1 1 0
0 1 1
1 0 1

 = 2.
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Circuit Diameter Bounds

Theorem 1 (Uncapacitated)

For A ∈ Rm×n and b ∈ Rm, the circuit diameter of

P = {x : Ax = b, x ≥ 0}

is O(m2 log(m + κW )).

Theorem 2 (Capacitated)

For A ∈ Rm×n, b ∈ Rm and u ∈ Rn, the circuit diameter of

Pu = {x : Ax = b, 0 ≤ x ≤ u}

is O(m2 log(m + κW ) + n log n).

Note: Simple reduction from Pu to P only gives O(n2 log(n + κW )).



Uncapacitated Circuit Diameter

• Let P = {x : Ax = b, x ≥ 0} and W = ker(A).

• Every x ∈W can be decomposed into ≤ n conformal circuits g (i) ∈W :

x =
k∑

i=1

g (i)

such that sgn(g
(i)
j ) = sgn(xj) for all i ∈ [k] and j ∈ [n].

Idea: Given vertices x , y ∈ P, let B be
a basis for y and N := [n] \ B.

I Decompose y − x into conformal
circuits g (1), g (2), . . . , g (k).

I Pick g (i) with the largest ‖g (i)
N ‖1

and augment.

I Repeat.
x1 x2 x3 x4 x5

0

g (1)

g (2)

g (3)



Proof of the O(m2 log(m + κW )) bound

• Let x (0), x (1), . . . be the resulting circuit walk from x to y .

Geometric decay: ‖x (t+1)
N ‖1 ≤

(
1− 1

n

)
‖x (t)N ‖1

• We analyze the sets

Lt =
{
i ∈ [n] : yi > nκW ‖x (t)N ‖1

}
Rt =

{
i ∈ [n] : x

(t)
i ≤ nyi

}

x
(t)
0 y0 x

(t)
1 y1 x

(t)
2 y2 x

(t)
3 y3 x

(t)
4 y4 x

(t)
5 y5

0

5κW ‖x (t)N ‖1

B N



Proof of the O(m2 log(m + κW )) bound

Lt =
{
i ∈ [n] : yi > nκW ‖x (t)N ‖1

}
Rt =

{
i ∈ [n] : x

(t)
i ≤ nyi

}

x
(t)
0 y0 x

(t)
1 y1 x

(t)
2 y2 x

(t)
3 y3 x

(t)
4 y4 x

(t)
5 y5

0

5κW ‖x (t)N ‖1

B N

Lemma 1: Lt ⊆ Lt+1 ⊆ B and Rt ⊆ Rt+1.

Lemma 2: Lt or Rt grows in O(n log(n + κW )) iterations.

=⇒ Circuit diameter O(n2 log(n + κW )). How to turn n into m?



Capacitated Circuit Diameter

• Let Pu = {x : Ax = b, 0 ≤ x ≤ u}.

• First, augment using conformal circuits of y − x (t) which minimize an
auxiliary cost function.

• Then, remove n−m capacity constraints using the following subroutine:

Support-Circuit (a.k.a. Moving to a face)

Input: Feasible point x ∈ Pu

Output: A circuit z ∈ ker(A) where supp(z) ⊆ supp(x).

• Finally, reduce to uncapacitated form and apply Theorem 1.{
(x , s) :

[
A 0
Im Im

] [
x
s

]
=

[
b
u

]
, (x , s) ≥ 0

}



Circuit Augmentation Algorithms

• Recall P = {x : Ax = b, x ≥ 0}. We use the following subroutine:

Ratio-Circuit (Wallacher’s Rule)

Input: Cost c ∈ Rn and feasible point x ∈ P.

Output: A circuit z ∈ ker(A) such that z[n]\supp(x) ≥ 0 and minimizes

c>z∑
i∈supp(x)

max(−zi , 0)

xi

.

Geometric decay: Augmenting along z shrinks the optimality gap by a
factor of (1− 1

n ).

=⇒ Weakly polynomial but not finite!



Circuit Augmentation Algorithms

Theorem 3 (Feasibility)

There is a circuit augmentation algorithm which given N ⊆ [n] finds

x ∈ P such that xN = 0,

or a dual certificate showing that no such solution exists, using
O(n2 log(n + κW )) Ratio-Circuit and n2 Support-Circuit calls.

Theorem 4 (Optimization)

There is a circuit augmentation algorithm which solves

min{c>x : x ∈ P}

using O(n3 log(n + κW )) Ratio-Circuit and n3 Support-Circuit calls.

• How does this differ to the circuit diameter setting?



Conclusion

For min{c>x : Ax = b, x ≥ 0} where A ∈ Rm×n,

Summary of Results:

1 Circuit diameter bounds:
I O(m2 log(κW +m)) for uncapacitated.
I O(m2 log(κW +m) + n log n) for capacitated.

2 Circuit augmentation algorithms:
I O(n2 log(κW + n)) Ratio-Circuit and n2 Support-Circuit calls for

feasibility.
I O(n3 log(κW + n)) Ratio-Circuit and n3 Support-Circuit calls for

optimization.

Open Problems:

1 poly(n,m, log κW ) bound on the diameter? poly(n,m, LA,b)?
I Current best: O((n −m)3mκW log(κW + n)) [Dadush–Hähnle ’16].

2 poly(n,m) bound on the circuit diameter?


