On Circuit Diameter Bounds via Circuit Imbalances

Zhuan Khye (Cedric) Koh

Joint work with Daniel Dadush, Bento Natura, László A. Végh

Overview

1 Diameter and Circuit Diameter of Polyhedra

2 Circuit Imbalance Measure κ

3 Main Results:

- Circuit diameter bounds in terms of κ
- Circuit augmentation algorithms for LP (runtime in terms of $\kappa)$
- 4 Conclusion and Future Directions

Linear Programming

• Given
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$,
(Primal) min $c^\top x$ (Dual) max $b^\top y$
s.t. $Ax = b$
 $x \ge 0$
s.t. $A^\top y \le c$

- n variables, m constraints, $L_{A,b,c}$ encoding length of the input
- Ellipsoid and Interior Point Methods run in $poly(n, m, L_{A,b,c})$ time.
- For Simplex Method, no polynomial pivot rule is known.

Smale's 9th Question: Is there a strongly polynomial algorithm for LP? (runs in poly(n, m) arithmetic operations using $poly(n, m, L_{A,b,c})$ space.)

Simplex Method and Diameter

• Consider the polyhedron

$$P = \{x : Ax = b, x \ge 0\}.$$

• The diameter of P is the max # of edges in a shortest path between any 2 vertices.

• Diameter $\leq \#$ of simplex pivots.

Hirsch's Conjecture: The diameter of a *d*-dimensional polyhedron with *f* facets is $\leq f - d$.

- Disproved by Santos in 2012.
- Polynomial version $(\leq poly(f))$ is still open.

• Quasi-polynomial upper bound known [Kalai–Kleitman '92], [Todd '14]. Current best bound: $(f - d)^{\log O(d/\log d)}$ [Sukegawa '18].

Circuit Diameter

• For $W = \ker(A)$, $g \in W \setminus \{0\}$ is a circuit if $\nexists h \in W \setminus \{0\}$ such that

 $supp(h) \subsetneq supp(g)$.

• Circuits are all possible edge directions of *P* when varying *b*.

• A circuit walk is a sequence of points $x^{(1)}, x^{(2)}, \ldots, x^{(k)}$ in P where $x^{(t+1)}$ is obtained from $x^{(t)}$ by moving along a circuit maximally.

- The circuit diameter of *P* is the max # of steps in a shortest circuit walk between any 2 vertices.
- 7-0

opt

• Circuit diameter \leq diameter.

Circuit Hirsch's Conjecture [Borgwardt, Finhold, Hemmecke '15]: The circuit diameter of a *d*-dimensional polyhedron with *f* facets is $\leq f - d$.

Goals

1 Upper bound the circuit diameter of *P*.

State of the Art

- Circuit diameter of combinatorial polyhedra:
 - Dual transportation polyhedra [Borgwardt, Finhold, Hemmecke '15].
 - Matching, travelling salesman and fractional stable set polytopes [Kafer, Pashkovich, Sanità '19].
- Circuit augmentation algorithms in network flow:
 - Edmonds–Karp–Dinic algorithm for max flow.
 - Min-mean cycle canceling for min-cost flow [Goldberg–Tarjan '89].
 - Min-ratio cycle canceling for min-cost flow [Wallacher '89].
 - All extended to LP [Bland '76], [Gauthier–Desrosiers '21], [Ekbatani, Natura, Végh '21], [McCormick–Shioura '00].
- Other circuit augmentation rules [De Loera, Hemmecke, Lee '15].
- Circuit augmentation on 0/1-polytopes [De Loera, Kafer, Sanità '19].

Circuit Imbalance Measure

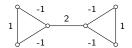
• For W = ker(A), the circuit imbalance measure is

$$\kappa_W = \max\left\{ \left| \frac{g_i}{g_j} \right| : i, j \in \operatorname{supp}(g), g \text{ circuit in } W \right\}.$$

• $\kappa_W = \kappa_{W^{\perp}}$.

- If A is totally unimodular, then $\kappa_W = 1$.
- For integral A with max subdeterminant Δ , $\kappa_W \leq \Delta$.
 - E.g., if A is the incidence matrix of K_n, then κ_W ≤ 2 and 2^{⌊n/3⌋} ≤ Δ because

$$det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 2.$$



Circuit Diameter Bounds

Theorem 1 (Uncapacitated)

For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the circuit diameter of

$$P = \{x : Ax = b, x \ge 0\}$$

is $O(m^2 \log(m + \kappa_W))$.

Theorem 2 (Capacitated)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $u \in \mathbb{R}^n$, the circuit diameter of

$$P_u = \{x : Ax = b, 0 \le x \le u\}$$

is $O(m^2 \log(m + \kappa_W) + n \log n)$.

Note: Simple reduction from P_u to P only gives $O(n^2 \log(n + \kappa_W))$.

Uncapacitated Circuit Diameter

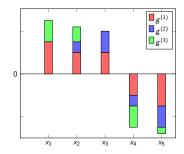
- Let $P = \{x : Ax = b, x \ge 0\}$ and $W = \ker(A)$.
- Every $x \in W$ can be decomposed into $\leq n$ conformal circuits $g^{(i)} \in W$:

$$x = \sum_{i=1}^{k} g^{(i)}$$

such that $sgn(g_j^{(i)}) = sgn(x_j)$ for all $i \in [k]$ and $j \in [n]$.

Idea: Given vertices $x, y \in P$, let B be a basis for y and $N := [n] \setminus B$.

- Decompose y x into conformal circuits g⁽¹⁾, g⁽²⁾,...,g^(k).
- Pick g⁽ⁱ⁾ with the largest ||g_N⁽ⁱ⁾||₁ and augment.
- Repeat.



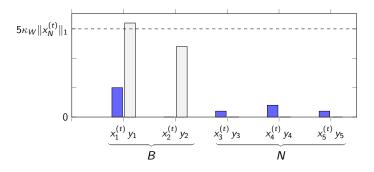
Proof of the $O(m^2 \log(m + \kappa_W))$ **bound**

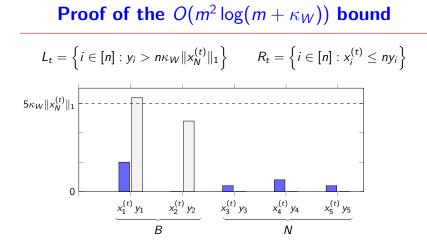
• Let $x^{(0)}, x^{(1)}, \ldots$ be the resulting circuit walk from x to y.

Geometric decay: $\|x_N^{(t+1)}\|_1 \le \left(1 - \frac{1}{n}\right) \|x_N^{(t)}\|_1$

• We analyze the sets

$$L_{t} = \left\{ i \in [n] : y_{i} > n\kappa_{W} \| x_{N}^{(t)} \|_{1} \right\} \qquad R_{t} = \left\{ i \in [n] : x_{i}^{(t)} \le ny_{i} \right\}$$





Lemma 1: $L_t \subseteq L_{t+1} \subseteq B$ and $R_t \subseteq R_{t+1}$.

Lemma 2: L_t or R_t grows in $O(n \log(n + \kappa_W))$ iterations.

 \implies Circuit diameter $O(n^2 \log(n + \kappa_W))$. How to turn *n* into *m*?

Capacitated Circuit Diameter

• Let
$$P_u = \{x : Ax = b, 0 \le x \le u\}.$$

• First, augment using conformal circuits of $y - x^{(t)}$ which minimize an auxiliary cost function.

• Then, remove n - m capacity constraints using the following subroutine:

Support-Circuit (a.k.a. Moving to a face)

Input: Feasible point $x \in P_u$ **Output:** A circuit $z \in ker(A)$ where $supp(z) \subseteq supp(x)$.

• Finally, reduce to uncapacitated form and apply Theorem 1.

$$\left\{ (x,s) : \begin{bmatrix} A & 0 \\ I_m & I_m \end{bmatrix} \begin{bmatrix} x \\ s \end{bmatrix} = \begin{bmatrix} b \\ u \end{bmatrix}, (x,s) \ge 0 \right\}$$

Circuit Augmentation Algorithms

• Recall $P = \{x : Ax = b, x \ge 0\}$. We use the following subroutine:

Ratio-Circuit (Wallacher's Rule)

Input: Cost $c \in \mathbb{R}^n$ and feasible point $x \in P$.

Output: A circuit $z \in \text{ker}(A)$ such that $z_{[n]\setminus \text{supp}(x)} \ge 0$ and minimizes

$$\frac{c^{\top}z}{\sum\limits_{\in \mathsf{supp}(x)}\frac{\max(-z_i,0)}{x_i}}$$

Geometric decay: Augmenting along z shrinks the optimality gap by a factor of $(1 - \frac{1}{n})$.

 \implies Weakly polynomial but not finite!

Circuit Augmentation Algorithms

Theorem 3 (Feasibility)

There is a circuit augmentation algorithm which given $N \subseteq [n]$ finds

 $x \in P$ such that $x_N = 0$,

or a dual certificate showing that no such solution exists, using $O(n^2 \log(n + \kappa_W))$ Ratio-Circuit and n^2 Support-Circuit calls.

Theorem 4 (Optimization)

There is a circuit augmentation algorithm which solves

 $\min\{c^{\top}x:x\in P\}$

using $O(n^3 \log(n + \kappa_W))$ Ratio-Circuit and n^3 Support-Circuit calls.

• How does this differ to the circuit diameter setting?

Conclusion

For min $\{c^{\top}x : Ax = b, x \ge 0\}$ where $A \in \mathbb{R}^{m \times n}$,

Summary of Results:

- 1 Circuit diameter bounds:
 - $O(m^2 \log(\kappa_W + m))$ for uncapacitated.
 - $O(m^2 \log(\kappa_W + m) + n \log n)$ for capacitated.
- ② Circuit augmentation algorithms:
 - $O(n^2 \log(\kappa_W + n))$ Ratio-Circuit and n^2 Support-Circuit calls for feasibility.
 - $O(n^3 \log(\kappa_W + n))$ Ratio-Circuit and n^3 Support-Circuit calls for optimization.

Open Problems:

poly(n, m, log κ_W) bound on the diameter? poly(n, m, L_{A,b})?
 Current best: O((n − m)³mκ_W log(κ_W + n)) [Dadush-Hähnle '16].
 poly(n, m) bound on the circuit diameter?