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Metric TSP

e Given an undirected graph G = (V, E) with edge costs ¢ € RZ,,

TSP: Find a minimum-cost Hamiltonian cycle in G.

» Inapproximable

Metric TSP: Find a minimum-cost spanning tour in G.
» APX-hard
» 3/2 approximation
» 3/2 — 1073¢ approximation

e Metric TSP on (G, c) = TSP on the metric completion (G, &)

G = Complete graph on V
¢, = Shortest path length between v and v in G



Subtour Elimination LP

min &' x

s.t. me,:2 YueV

Y xw=2 VOCSCV
ueS,v¢S
Xugy > 0 YuveV
e Used in many approximation/exact algorithms for TSP.

e The LP optimal value coincides with the Held—Karp bound.

Conjecture: The LP integrality gap is at most 4/3



2-ECSM LP

e LP relaxation of the 2-edge-connected spanning multisubgraph problem:
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Fact: Subtour LP optimal value = 2-ECSM LP optimal value.

e Methods for solving the LP:
» Ellipsoid: separation oracle is min cut
» Held—Karp bound/heuristic: iterate over 1-trees
» Multiplicative weight update (MWU)



Solving the LP via MWU

o FPTAS which returns a (1 + €)-approximate solution.

e Sequential algorithms:
» O(n*/e2) [Plotkin, Shmoys, Tardos '95]
» O(m?/e?) [Garg, Khandekar '02]
» O(m/e?) [Chekuri, Quanrud '17]

Main Result [KWY '25]
Parallel algorithm that runs in O(m/c*) work and O(1/*) depth.

Framework: Width-independent epoch-based MWU.
[Garg, Konemann '07] [Fleischer '00] [Luby, Nisan '93] [Young '01]



Epoch-Based MWU

e Initialize edge weights as w = 1/c.

e Given a fixed lower bound X\ on the mincut value, define

C*:={Ccut :w(C) < (1+¢e)A}.

While C* # :
@ Select cut(s) from C*. an epoch

® Multiplicatively increase w along these cuts.

e A < A(1+¢) and a new epoch begins.

e Terminate when ||w/||~ is big.



Epoch-Based MWU

While C* # (:
@ Select cut(s) from C*.

® Multiplicatively increase w(t) along these
cuts.

Sequential MWU: Select one cut from C*

— O(m/&?) iterations

Parallel MWU: Select all cuts from C*
— O(log(|C*])/e*) iterations

— O(1/¢*) iterations because |C*| = O(n?) for cuts.



Core-Sequence

e Parallel MWU can incur Q(n?) work.

New Selection Rule:
@ Fix a representative set S C C*.

® In every iteration, select SNC* as
long as it is nonempty.

© Repeat Steps 1 and 2 until C* = 0.

Definition
The sequence S = (S,...,S;) of representative sets is called a
core-sequence of the epoch.



Core-Sequence

e Special cases:
» S=(51,...,5) where |S;| =1 for all i € [{] = sequential MWU.
> §=(C*) = parallel MWU.

Theorem K

If MWU uses a core-sequence of length < /£ with sets of size < k in every
epoch, then the number of iterations is

5 (mog(k)) .

e Tradeoff between ¢ and k.



Core-Sequence for 2-ECSM LP

Theorem K

For 2-ECSM LP, every ep9ch has a core-sequence of length O(l) in
which every set has size O(n).

e Despite |C*| = O(n?), only need to select O(n) of them!

Theorem K

There is a parallel FPTAS for the Held—Karp bound that runs in
O(m/e*) work and O(1/c*) depth.



Finding the Core-Sequence

Tree Packing: Compute O(log n) spanning trees T such that w.h.p.,
every cut in C* intersects < 2 edges of some T € T.

e Fix atree T € T. Assume it is a path for simplicity.
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Idea: For i > 0, decompose T into paths P; of length 2/. If
S; := {Cuts in C* that intersect < 2 edges of T on some P € P;},

then |S;| = O(n) for all i.



Conclusion

e Introduced core-sequence as a new selection rule for MWU.

e Parallel FPTAS that runs in nearly linear work and polylog depth for
» Held—Karp bound and k-ECSM LP
» k-ECSS LP

e Future directions:
> Apply core-sequence to other implicit packing/covering LPs
» Better dependence on ¢

> Extension to streaming/distributed models

Thank You!



