Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Work and Polylog Depth

Zhuan Khye (Cedric) Koh

Omri Weinstein Sorrachai Yingchareonthawornchai

Metric TSP

• Given an undirected graph G = (V, E) with edge costs $c \in \mathbb{R}^m_{>0}$,

TSP: Find a minimum-cost Hamiltonian cycle in G.

Inapproximable

Metric TSP: Find a minimum-cost spanning tour in G.

- APX-hard [Lampis '14]
- 3/2 approximation [Christofides '76] [Serdyukov '78]
- ▶ 3/2 10⁻³⁶ approximation [Karlin, Klein, Oveis Gharan '22]
- Metric TSP on $(G, c) \equiv$ TSP on the metric completion (\hat{G}, \hat{c})

 $\hat{G} =$ Complete graph on V $\hat{c}_{uv} =$ Shortest path length between u and v in G

Subtour Elimination LP

[Dantzig, Fulkerson, Johnson '54]

min
$$\hat{c}^{\top} x$$

s.t. $\sum_{v} x_{uv} = 2$ $\forall u \in V$
 $\sum_{u \in S, v \notin S} x_{uv} \ge 2$ $\forall \emptyset \subsetneq S \subsetneq V$
 $x_{uv} \ge 0$ $\forall u, v \in V$

- Used in many approximation/exact algorithms for TSP.
- The LP optimal value coincides with the Held-Karp bound.

Conjecture: The LP integrality gap is at most 4/3 [Goemans '95].

2-ECSM LP

• LP relaxation of the 2-edge-connected spanning multisubgraph problem:

$$\begin{array}{ll} \min \ c^{\top}x \\ \text{s. t.} \ \sum_{e \in \delta_G(S)} x_e \geq 2 \qquad \forall \emptyset \subsetneq S \subsetneq V \\ x_e \geq 0 \qquad \forall e \in E. \end{array}$$

Fact: Subtour LP optimal value = 2-ECSM LP optimal value.

[Cunningham '90] [Goemans, Bertsimas '93]

- Methods for solving the LP:
 - Ellipsoid: separation oracle is min cut
 - Held–Karp bound/heuristic: iterate over 1-trees
 - Multiplicative weight update (MWU)

Solving the LP via MWU

- FPTAS which returns a $(1 + \varepsilon)$ -approximate solution.
- Sequential algorithms:
 - $\tilde{O}(n^4/\varepsilon^2)$ [Plotkin, Shmoys, Tardos '95]
 - $\tilde{O}(m^2/\varepsilon^2)$ [Garg, Khandekar '02]
 - $\tilde{O}(m/\varepsilon^2)$ [Chekuri, Quanrud '17]

Main Result [KWY '25]

Parallel algorithm that runs in $ilde{O}(m/\varepsilon^4)$ work and $ilde{O}(1/\varepsilon^4)$ depth.

Framework: Width-independent epoch-based MWU. [Garg, Könemann '07] [Fleischer '00] [Luby, Nisan '93] [Young '01]

Epoch-Based MWU

- Initialize edge weights as w = 1/c.
- \bullet Given a fixed lower bound λ on the mincut value, define

$$\mathcal{C}^* := \{ \mathcal{C} \text{ cut } : w(\mathcal{C}) < (1 + \varepsilon)\lambda \}.$$

- While $C^* \neq \emptyset$:an epoch1 Select cut(s) from C^* .an epoch2 Multiplicatively increase w along these cuts.
- $\lambda \leftarrow \lambda(1 + \varepsilon)$ and a new epoch begins.
- Terminate when $||w||_{\infty}$ is big.

Epoch-Based MWU

While $C^* \neq \emptyset$:

1 Select cut(s) from C^* .

Multiplicatively increase w^(t) along these cuts.

Sequential MWU: Select one cut from C^*

 $\implies \tilde{O}(m/\varepsilon^2)$ iterations [Garg, Könemann '07] [Fleischer '00].

Parallel MWU: Select all cuts from C^*

- $\implies \tilde{O}(\log(|\mathcal{C}^*|)/\varepsilon^4)$ iterations [Luby, Nisan '93] [Young '01].
- $\implies ilde{O}(1/arepsilon^4)$ iterations because $|\mathcal{C}^*| = O(n^2)$ for cuts.

Core-Sequence

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

- 1 Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select S ∩ C* as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

Definition

The sequence $S = (S_1, \dots, S_\ell)$ of representative sets is called a core-sequence of the epoch.

Core-Sequence

Special cases:

▶ $S = (S_1, ..., S_\ell)$ where $|S_i| = 1$ for all $i \in [\ell] \implies$ sequential MWU. ▶ $S = (C^*) \implies$ parallel MWU.

Theorem [KWY '25]

If MWU uses a core-sequence of length $\leq \ell$ with sets of size $\leq k$ in every epoch, then the number of iterations is

$$\tilde{O}\left(rac{\ell \log(k)}{\varepsilon^4}
ight).$$

• Tradeoff between ℓ and k.

Theorem [KWY '25]

For 2-ECSM LP, every epoch has a core-sequence of length $\tilde{O}(1)$, in which every set has size $\tilde{O}(n)$.

• Despite $|\mathcal{C}^*| = O(n^2)$, only need to select $\tilde{O}(n)$ of them!

Theorem [KWY '25]

There is a parallel FPTAS for the Held–Karp bound that runs in $\tilde{O}(m/\varepsilon^4)$ work and $\tilde{O}(1/\varepsilon^4)$ depth.

Finding the Core-Sequence

Tree Packing: Compute $O(\log n)$ spanning trees \mathcal{T} such that w.h.p., every cut in \mathcal{C}^* intersects ≤ 2 edges of some $\mathcal{T} \in \mathcal{T}$. [Karger '00]

• Fix a tree $T \in T$. Assume it is a path for simplicity.

Idea: For $i \ge 0$, decompose T into paths \mathcal{P}_i of length 2^i . If

 $S_i := \{ \text{Cuts in } C^* \text{ that intersect} \le 2 \text{ edges of } T \text{ on some } P \in \mathcal{P}_i \},$ then $|S_i| = O(n)$ for all *i*.

Conclusion

- Introduced core-sequence as a new selection rule for MWU.
- Parallel FPTAS that runs in nearly linear work and polylog depth for
 - ► Held–Karp bound and k-ECSM LP
 - k-ECSS LP
- Future directions:
 - Apply core-sequence to other implicit packing/covering LPs
 - Better dependence on ε
 - Extension to streaming/distributed models

Thank You!