An Efficient Characterization of Submodular
Spanning Tree Games

Zhuan Khye Koh Laura Sanita

THE LONDON SCHOOL

M B wiinic

POLITICAL SCIENCE W



Cooperative game




Cooperative game

Setting: A set of players N who are allowed to cooperate.



Cooperative game

Setting: A set of players N who are allowed to cooperate.

® ° ¢
2 2 8

Goal: Distribute cost or revenue among them.



Cooperative game

Setting: A set of players N who are allowed to

® ° o

D ¢
2 8 g

Goal: Distribute cost or revenue among them.

e To model cooperation, we use a characteristic function v : 2N 5 R,



Cooperative game

Setting: A set of players N who are allowed to

® ° o

D ¢
2 8 g

Goal: Distribute cost or revenue among them.

e To model cooperation, we use a characteristic function v : 2N 5 R,
> 1(S) = total cost paid by the players in S if they form a



Cooperative game

Setting: A set of players N who are allowed to

Goal: Distribute cost or revenue among them.

e To model cooperation, we use a characteristic function v : 2N 5 R,
> 1(S) = total cost paid by the players in S if they form a



Cooperative game

Setting: A set of players N who are allowed to

Goal: Distribute cost or revenue among them.

e To model cooperation, we use a characteristic function v : 2N 5 R,
> 1(S) = total cost paid by the players in S if they form a



Cooperative game

Setting: A set of players N who are allowed to

Goal: Distribute cost or revenue among them.

e To model cooperation, we use a characteristic function v : 2N 5 R,
> 1(S) = total cost paid by the players in S if they form a

e An instance of the game is defined by (N, v).



Cooperative game

Setting: A set of players N who are allowed to

Goal: Distribute cost or revenue among them.

e To model cooperation, we use a characteristic function v : 2N 5 R,
> 1(S) = total cost paid by the players in S if they form a

e An instance of the game is defined by (N, v).
e An outcome of the game is an y € RN such that

Z yv = v(N).

veN



How “good” is an allocation?




How “good” is an allocation?

e Many criteria for evaluating an allocation:



How “good” is an allocation?

e Many criteria for evaluating an allocation:

» Fairness - Is every agent charged proportionally to its contribution?



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

e We use . Some popular ones include:



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

e We use . Some popular ones include:
» Core: ) ,csyv < v(S) forall S CN.



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

® 7 &
2 2 2

e We use . Some popular ones include:
» Core: ), csyv < v(S) forall S CN.



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

@

e We use . Some popular ones include:
» Core: ), csyv < v(S) forall S CN.



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

e We use . Some popular ones include:
» Core: ), csyv < v(S) forall S CN.



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

e We use . Some popular ones include:
» Core: ), csyv < v(S) forall S CN.
» Shapley value, nucleolus, kernel, bargaining set, stable set, ...



How “good” is an allocation?

e Many criteria for evaluating an allocation:
» Fairness - Is every agent charged proportionally to its contribution?

» Stability - Are there any incentives to cooperate?

e We use . Some popular ones include:
» Core: ), csyv < v(S) forall S CN.
» Shapley value, nucleolus, kernel, bargaining set, stable set, ...

e Generally hard to compute unless v satisfies certain properties.



Submodularity




Submodularity

Def. A game is if forany S, T C N,

v(S)+v(T)>v(SUT)+v(SNT).



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).
e Equivalently, forany SC TC Nand ue N\ T,

v(SUW)—v(S) > v(TUu)—v(T).



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.

e Some advantages of submodularity:



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.

e Some advantages of submodularity:

» [Shapley '71] A core solution exists and can be computed efficiently.



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.

e Some advantages of submodularity:
» [Shapley '71] A core solution exists and can be computed efficiently.

» Core membership is easy.



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.

e Some advantages of submodularity:
» [Shapley '71] A core solution exists and can be computed efficiently.
» Core membership is easy.
» [Kuipers '96] The nucleolus can be computed efficiently.



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.

e Some advantages of submodularity:
» [Shapley '71] A core solution exists and can be computed efficiently.
» Core membership is easy.
» [Kuipers '96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e “Snowballing” effect.

e Some advantages of submodularity:
» [Shapley '71] A core solution exists and can be computed efficiently.
» Core membership is easy.
» [Kuipers '96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

» [van den Nouweland & Borm '91] Communication game.



Submodularity

Def. A game is if forany S, T C N,
v(S)+uv(T)>v(SUT)+v(SNT).

e Equivalently, forany SC TC Nand ue N\ T,
v(SUW)—v(S) > v(TUu)—v(T).

e "Snowballing” effect.

e Some advantages of submodularity:
» [Shapley '71] A core solution exists and can be computed efficiently.
» Core membership is easy.
» [Kuipers '96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

» [van den Nouweland & Borm '91] Communication game.

» [Okamoto '03] Coloring game and vertex cover game.



Spanning tree game




Spanning tree game

e Introduced by [Claus & Kleitman '73].



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.




Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2

N
w



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2 7\5

N
w



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2 7\5

N
w



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2 7\5
2 2
e An instance is defined by an edge-weighted yn\ 2 yﬁ\
complete graph G = (V, E) where V = NUr.
2 3
5



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2 7\5
2 2
e An instance is defined by an edge-weighted yn\ 2 yn\
complete graph G = (V, E) where V = NUT .
e The clients can cooperate. 2 3
5



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2 7\5
2 2
e An instance is defined by an edge-weighted yﬁ\ 2 yﬁ\

complete graph G = (V, E) where V = NUr.

e The clients can cooperate.

N
w

e For S C N, v(S) is the cost of a minimum 5
spanning tree in G[S U r]. A 3 A
2 2



Spanning tree game

e Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be
connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree. 1/ 2 7\5

2 2
e An instance is defined by an edge-weighted yﬁ\ 2 yﬁ\
complete graph G = (V, E) where V = NUT .
e The clients can cooperate. 2 3

e For S C N, v(S) is the cost of a minimum 5
spanning tree in G[S U r].

&
- W



Spanning tree game




Spanning tree game

e Not submodular.



Spanning tree game

e Not submodular.

e [Bird '76] proposed an allocation scheme.



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.

e [Granot & Huberman '81] Bird's allocation is a core solution.



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.
e [Granot & Huberman '81] Bird's allocation is a core solution.

e [Granot & Huberman '82] The game is



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.
e [Granot & Huberman '81] Bird's allocation is a core solution.

e [Granot & Huberman '82] The game is

» There exists an ordering 1,2, ..., n of the players such that for any
j<kand SC N\ K]

v([1U S) — v(l]) = v([kK] U S) — v([K]).



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.
e [Granot & Huberman '81] Bird's allocation is a core solution.

e [Granot & Huberman '82] The game is

» There exists an ordering 1,2, ..., n of the players such that for any
j<kand SC N\ K]

v([1U S) — v(l]) = v([kK] U S) — v([K]).

> Generalizes submodularity.



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.
e [Granot & Huberman '81] Bird's allocation is a core solution.

e [Granot & Huberman '82] The game is

» There exists an ordering 1,2, ..., n of the players such that for any
j<kand SC N\ K]

v([1U S) — v(li]) = v([kK] U S) — v([k]).
> Generalizes submodularity.

e [Faigle et al. '97] Core membership is co-NP-hard.



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.
e [Granot & Huberman '81] Bird's allocation is a core solution.

e [Granot & Huberman '82] The game is

» There exists an ordering 1,2, ..., n of the players such that for any
j<kand SC N\ K]

v([1U S) — v(li]) = v([kK] U S) — v([k]).
> Generalizes submodularity.

e [Faigle et al. '97] Core membership is co-NP-hard.
e [Faigle et al. '98] Computing the nucleolus is NP-hard.



Spanning tree game

e Not submodular.
e [Bird '76] proposed an allocation scheme.
e [Granot & Huberman '81] Bird's allocation is a core solution.

e [Granot & Huberman '82] The game is

» There exists an ordering 1,2, ..., n of the players such that for any
j<kand SC N\ K]

v([1U S) — v(li]) = v([kK] U S) — v([k]).
> Generalizes submodularity.

e [Faigle et al. '97] Core membership is co-NP-hard.
e [Faigle et al. '98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



State of the art




State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.

> Efficiently testable using block decomposition.



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.

> Efficiently testable using block decomposition.

> HA



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.

> Efficiently testable using block decomposition.

Y= B



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.

> Efficiently testable using block decomposition.

Y= B

e For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau '12] also gave a sufficient condition.



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.

> Efficiently testable using block decomposition.

Y= B

e For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau '12] also gave a sufficient condition.

e It was conjectured that testing submodularity is co-NP-complete.



State of the art

e [Kobayashi & Okamoto '14] characterized submodularity when G has
only two distinct edge-weights.

» Let G; be the subgraph spanned by the cheaper edges.

» Submodular < The vertices of every cycle in G; are adjacent to r or
pairwise adjacent.

> Efficiently testable using block decomposition.

Y= B

e For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau '12] also gave a sufficient condition.

e It was conjectured that testing submodularity is co-NP-complete.

e In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



Preliminaries




Preliminaries

Def. An instance is if for any S C N and u,v e N\ S,
v(Suu)+v(SUv)—v(S)—v(SU{u,v}) >0



Preliminaries

Def. An instance is if for any S C N and u,v e N\ S,
v(Suu)+v(SUv)—v(S)—v(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].



Preliminaries

Def. An instance is if for any S C N and u,v e N\ S,
v(Suu)+v(SUv)—v(S)—v(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].
eForuveN, S, ={SCV:reSandu,v ¢S}



Preliminaries

Def. An instance is if for any S C N and u,v e N\ S,
mst(S U u) + mst(S U v) — mst(S) — mst(S U {u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].
eForuveN, S, ={SCV:reSandu,v ¢S}



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
mst(S U u) + mst(S U v) — mst(S) — mst(S U {u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].
eForuveN, S, ={SCV:reSandu,v ¢S}



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
fu(S) == mst(SU u) + mst(SU v) — mst(S) — mst(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].
eForuveN, S, ={SCV:reSandu,v ¢S}



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
fu(S) == mst(SU u) + mst(SU v) — mst(S) — mst(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].

eForuveN, S, ={SCV:reSandu,v ¢S}

e Sort the edge weights wy < wp < -+ - < wy.



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
fu(S) == mst(SU u) + mst(SU v) — mst(S) — mst(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].

eForuveN, S, ={SCV:reSandu,v ¢S}

e Sort the edge weights wy < wp < -+ - < wy.

e Define the subgraph G; := (V, E;) where E; = {e € E : w(e) < w;}.



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
fu(S) == mst(SU u) + mst(SU v) — mst(S) — mst(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].
eForuveN, S, ={SCV:reSandu,v ¢S}

e Sort the edge weights wy < wp < -+ - < wy.

e Define the subgraph G; := (V, E;) where E; = {e € E : w(e) < w;}.
Def. The of an edge uv is

A

N(uv) = {s e V :w(su) > w(uv) or w(sv) > w(uv)}.



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
fu(S) == mst(SU u) + mst(SU v) — mst(S) — mst(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].

eForuveN, S, ={SCV:reSandu,v ¢S}

e Sort the edge weights wy < wp < -+ - < wy.

e Define the subgraph G; := (V, E;) where E; = {e € E : w(e) < w;}.

Def. The of an edge uv is

A

N(uv) = {s e V :w(su) > w(uv) or w(sv) > w(uv)}.

s1 S s3



Preliminaries

Def. An instance is if for any u,ve Nand SCS,,,
fu(S) == mst(SU u) + mst(SU v) — mst(S) — mst(SU{u,v}) >0

e For S C V, mst(S) := cost of a minimum spanning tree in G[S].

eForuveN, S, ={SCV:reSandu,v ¢S}

e Sort the edge weights wy < wp < -+ - < wy.

e Define the subgraph G; := (V, E;) where E; = {e € E : w(e) < w;}.

Def. The of an edge uv is

A

N(uv) = {s e V :w(su) > w(uv) or w(sv) > w(uv)}.

s1 S s3



Main result

Theorem: The spanning tree game on G is submodular if and only if:
® There are no in G; for all i < k.
@® For every uv, fu (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.



First step




First step

e Submodularity characterization for k = 2:

The vertices of every cycle in Gy are adjacent to r
or pairwise adjacent.




First step

e Submodularity characterization for k = 2:

The vertices of every cycle in Gy are adjacent to r
or pairwise adjacent.

e A natural extension:

The vertices of every cycle in G; are adjacent to r
or pairwise adjacent, for all i < k.




First step

e Submodularity characterization for k = 2:

The vertices of every cycle in Gy are adjacent to r
or pairwise adjacent.

e A natural extension:

The vertices of every cycle in G; are adjacent to r
or pairwise adjacent, for all i < k.

e This condition is too strong.



First step

e Submodularity characterization for k = 2:

The vertices of every cycle in Gy are adjacent to r
or pairwise adjacent.

e A natural extension:

The vertices of every cycle in G; are adjacent to r
or pairwise adjacent, for all i < k.

e This condition is too strong.

G, ®

G



First step

e Submodularity characterization for k = 2:

The vertices of every cycle in Gy are adjacent to r
or pairwise adjacent.

e A natural extension:

The vertices of every cycle in G; are adjacent to r
or pairwise adjacent, for all i < k.

e This condition is too strong.

G, ®

® @

G

e G, violates the condition, yet the instance is submodular.



Violated cycles




Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

Py P>



Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

> f covers C if w(f) > w(e) for all e € E(Py) or e € E(P»).

Py P>



Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

> f Cif w(f) > w(e) for all e € E(Py) or e € E(P>).
> Cis if it is covered by all of its chords.

u

Py P>



Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

> f Cif w(f) > w(e) for all e € E(Py) or e € E(P>).
> Cis if it is covered by all of its chords.
u 1
P1 P> 1 1



Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

> f Cif w(f) > w(e) for all e € E(Py) or e € E(P>).
> Cis if it is covered by all of its chords.
u 1
P P> 1 1
v 3
Def. A cycle is if it is well-covered but its vertices are neither

adjacent to r nor pairwise adjacent.



Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

> f Cif w(f) > w(e) for all e € E(Py) or e € E(P>).
> Cis if it is covered by all of its chords.
u 1
P P> 1 1
v 3
Def. A cycle is if it is well-covered but its vertices are neither

adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.



Violated cycles

Def. Given a cycle C and a chord f = uv, let P; and P, denote the two
u-v paths in C.

> f Cif w(f) > w(e) for all e € E(Py) or e € E(P>).
> Cis if it is covered by all of its chords.
u 1
P P> 1 1
v 3
Def. A cycle is if it is well-covered but its vertices are neither

adjacent to r nor pairwise adjacent.
Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

» Coincides with [Kobayashi & Okamoto '14] when k = 2.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called

Def. A hole is if at least one of its vertices is not adjacent to r.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called

Def. A hole is if at least one of its vertices is not adjacent to r.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called

Def. A hole is if at least one of its vertices is not adjacent to r.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called

Def. A hole is if at least one of its vertices is not adjacent to r.

Def. An induced diamond is if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r.

r r



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called

Def. A hole is if at least one of its vertices is not adjacent to r.

Def. An induced diamond is if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r.

r r r



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

e Recall some basic structures:
» Hole.
» Diamond. The degree-two vertices are called

Def. A hole is if at least one of its vertices is not adjacent to r.

Def. An induced diamond is if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r.

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in G; for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

Proof: Contrapositive.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.

Proof: Contrapositive.

> Let j be the smallest integer such that G; has a violated cycle.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
» Pick the smallest violated cycle C in G;.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
» Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.

> Let j be the smallest integer such that G; has a violated cycle.

» Pick the smallest violated cycle C in G;.

» We may assume that C has a chord.

» Claim: The of C formed by any chord are well-covered.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).




Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).




Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).




Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).




Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).




Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).

» Cis a bad induced diamond. (We skip the case r ¢ V(C).)



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in G; for all i < k.
Proof: Contrapositive.
> Let j be the smallest integer such that G; has a violated cycle.
> Pick the smallest violated cycle C in G;.
» We may assume that C has a chord.
» Claim: The of C formed by any chord are well-covered.
» Suppose r € V(C).

» Cis a bad induced diamond. (We skip the case r ¢ V(C).)

Remark: Violated cycles can be detected in polynomial time.



Is this sufficient?




Is this sufficient?

e Recall our example:

/o

G1

e
G



Is this sufficient?

e Recall our example:

® O——v) GvG
e X1

fiw({r,s}) = mst({r,s, u}) + mst({r,s,v}) — mst({r,s}) — mst({r,s, u,v})



Is this sufficient?

e Recall our example:
@/Z N
Gl GZ

fiw({r,s}) = mst({r,s, u}) + mst({r,s,v}) — mst({r,s}) — mst({r,s, u,v})
=2ws +2wr — w3 — (Wl + 2W2)



Is this sufficient?

e Recall our example:

® G, (v) G, (V)

S 7 K
® 0 ® 0 6]

Gl GZ

fiw({r,s}) = mst({r,s, u}) + mst({r,s,v}) — mst({r,s}) — mst({r,s, u,v})

=2ws +2wr — w3 — (Wl + 2W2)

:2W2—W1—W3



Is this sufficient?

e Recall our example:

® @ Q) @ V)

S U K
® @ ® @ ®

Gl GZ

fiw({r,s}) = mst({r,s, u}) + mst({r,s,v}) — mst({r,s}) — mst({r,s, u,v})

=2ws +2wr — w3 — (Wl + 2W2)

=2w, — Wy — w3 <— can be made negative



Candidate edge




Candidate edge

e Denote () as the following property:

‘ There are no violated cycles in G; for all i < k.




Candidate edge

e Denote () as the following property:

‘ There are no violated cycles in G; for all i < k.

Lemma 4*: If S Z N,,, then f,,(S) = 0.



Candidate edge

e Denote () as the following property:

‘ There are no violated cycles in G; for all i < k.

Lemma 4*: If S Z N,,, then f,,(S) = 0.

> If r ¢ N(uv), then S € N(uv) for all S € S,,.



Candidate edge

e Denote () as the following property:

‘ There are no violated cycles in G; for all i < k.

Lemma 4*: If S Z N,,, then f,,(S) = 0.

> If r ¢ N(uv), then S € N(uv) for all S € S,,.

» So we can skip these edges!



Candidate edge

e Denote () as the following property:

‘ There are no violated cycles in G; for all i < k.

Lemma 4*: If S Z N,,, then f,,(S) = 0.

> If r ¢ N(uv), then S € N(uv) for all S € S,,.

» So we can skip these edges!

Def. An edge uv is a if r e N(uv).



Candidate edge

e Denote () as the following property:

‘ There are no violated cycles in G; for all i < k.

Lemma 4*: If S Z N,,, then f,,(S) = 0.

> If r ¢ N(uv), then S € N(uv) for all S € S,,.
» So we can skip these edges!
Def. An edge uv is a if r e N(uv).

Lemma 5*: Assume f,, (N(uv)) >0 for every candidate edge uv. Then,
f.v is inclusion-wise nonincreasing in N(uv) for every candidate edge uv.



Putting it all together




Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.

» Condition 1 is satisfied by Lemma 1.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.

» Condition 1 is satisfied by Lemma 1.
» Condition 2 is satisfied trivially.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.

» Condition 1 is satisfied by Lemma 1.
» Condition 2 is satisfied trivially.

(«=) Assume Conditions 1 and 2 are satisfied.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.

» Condition 1 is satisfied by Lemma 1.
» Condition 2 is satisfied trivially.

(«=) Assume Conditions 1 and 2 are satisfied.
» Let u,ve Nand S €S,,.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.

» Condition 1 is satisfied by Lemma 1.
» Condition 2 is satisfied trivially.

(«=) Assume Conditions 1 and 2 are satisfied.
» Let u,ve Nand S €S,,.
> If S ¢ N(uv), then £,,(S) = 0 by Lemma 4.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:
@ There are no violated cycles in G; for all i < k.
@ For every candidate edge uv, f,, (N(uv)) > 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(=) Assume the game is submodular.

» Condition 1 is satisfied by Lemma 1.
» Condition 2 is satisfied trivially.

(«=) Assume Conditions 1 and 2 are satisfied.
» Let u,ve Nand S €S,,.
> If S ¢ N(uv), then £,,(S) = 0 by Lemma 4.
> If S C N(uv), then ,,(S) > f,,(N(uv)) > 0 by Lemma 5.



Thank youl!



