
An Efficient Characterization of Submodular
Spanning Tree Games

Zhuan Khye Koh Laura Sanità



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



Cooperative game

Setting: A set of players N who are allowed to cooperate.

ν(S) = 5

ν(S ′) = 8

Goal: Distribute cost or revenue among them.

• To model cooperation, we use a characteristic function ν : 2N → R.

I ν(S) = total cost paid by the players in S if they form a coalition.

• An instance of the game is defined by (N, ν).

• An outcome of the game is an allocation y ∈ RN such that∑
v∈N

yv = ν(N).



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2

ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



How “good” is an allocation?

• Many criteria for evaluating an allocation:

I Fairness - Is every agent charged proportionally to its contribution?

I Stability - Are there any incentives to cooperate?

2

2

2

2

2

2ν(S) = 5

ν(S ′) = 8

• We use solution concepts. Some popular ones include:

I Core:
∑

v∈S yv ≤ ν(S) for all S ⊆ N.

I Shapley value, nucleolus, kernel, bargaining set, stable set, . . .

• Generally hard to compute unless ν satisfies certain properties.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Submodularity

Def. A game is submodular/convex if for any S ,T ⊆ N,

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T ).

• Equivalently, for any S ⊆ T ⊆ N and u ∈ N \ T ,

ν(S ∪ u)− ν(S) ≥ ν(T ∪ u)− ν(T ).

• “Snowballing” effect.

• Some advantages of submodularity:

I [Shapley ’71] A core solution exists and can be computed efficiently.

I Core membership is easy.

I [Kuipers ’96] The nucleolus can be computed efficiently.

Q. Can we characterize submodular instances of a cooperative game?

I [van den Nouweland & Borm ’91] Communication game.

I [Okamoto ’03] Coloring game and vertex cover game.



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5

1

2

3

2



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5

1

2

3

2



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5

1

2

3

2



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5

1

2

3

2



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5

1

2

3

2



Spanning tree game

• Introduced by [Claus & Kleitman ’73].

Setting: A set of clients N would like to be
connected to a source r .

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted
complete graph G = (V ,E ) where V = N∪r .

• The clients can cooperate.

• For S ⊆ N, ν(S) is the cost of a minimum
spanning tree in G [S ∪ r ].

r

2 2

2 2

1 572

2

3

3

2

6

5

1

2



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



Spanning tree game

• Not submodular.

• [Bird ’76] proposed an allocation scheme.

• [Granot & Huberman ’81] Bird’s allocation is a core solution.

• [Granot & Huberman ’82] The game is permutationally convex.

I There exists an ordering 1, 2, . . . , n of the players such that for any
j ≤ k and S ⊆ N \ [k],

ν([j ] ∪ S)− ν([j ]) ≥ ν([k] ∪ S)− ν([k]).

I Generalizes submodularity.

• [Faigle et al. ’97] Core membership is co-NP-hard.

• [Faigle et al. ’98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



State of the art

• [Kobayashi & Okamoto ’14] characterized submodularity when G has
only two distinct edge-weights.

I Let G1 be the subgraph spanned by the cheaper edges.

I Submodular ⇔ The vertices of every cycle in G1 are adjacent to r or
pairwise adjacent.

I Efficiently testable using block decomposition.

r

• For general weights, they stated some sufficient conditions and some
necessary conditions. [Trudeau ’12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• In this work, we fully characterize submodular instances. This
characterization can be verified in polynomial time.



Preliminaries

Def. An instance is submodular if for any

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any S ⊆ N and u, v ∈ N \ S ,

ν(S ∪ u) + ν(S ∪ v)− ν(S)− ν(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any S ⊆ N and u, v ∈ N \ S ,

ν(S ∪ u) + ν(S ∪ v)− ν(S)− ν(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any S ⊆ N and u, v ∈ N \ S ,

ν(S ∪ u) + ν(S ∪ v)− ν(S)− ν(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.

• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any S ⊆ N and u, v ∈ N \ S ,

mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.

• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.

• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

fuv (S) := mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.

• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

fuv (S) := mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

fuv (S) := mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

fuv (S) := mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

fuv (S) := mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Preliminaries

Def. An instance is submodular if for any u, v ∈ N and S ⊆ Suv ,

fuv (S) := mst(S ∪ u) + mst(S ∪ v)−mst(S)−mst(S ∪ {u, v}) ≥ 0

• For S ⊆ V , mst(S) := cost of a minimum spanning tree in G [S ].

• For u, v ∈ N, Suv := {S ⊆ V : r ∈ S and u, v /∈ S}.
• Sort the edge weights w1 < w2 < · · · < wk .

• Define the subgraph Gi := (V ,Ei ) where Ei = {e ∈ E : w(e) ≤ wi}.

Def. The expensive neighborhood of an edge uv is

N̂(uv) := {s ∈ V : w(su) > w(uv) or w(sv) > w(uv)} .

u v

s1 s2 s3
w1

w2

w3



Main result

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.



First step

• Submodularity characterization for k = 2:

The vertices of every cycle in G1 are adjacent to r
or pairwise adjacent.

• A natural extension:

The vertices of every cycle in Gi are adjacent to r
or pairwise adjacent, for all i < k.

• This condition is too strong.

r

u s

v

1

2

G1

r

u s

v

2

2

2

2

G2

r

u s

v

3

G3 = G

• G2 violates the condition, yet the instance is submodular.



First step

• Submodularity characterization for k = 2:

The vertices of every cycle in G1 are adjacent to r
or pairwise adjacent.

• A natural extension:

The vertices of every cycle in Gi are adjacent to r
or pairwise adjacent, for all i < k.

• This condition is too strong.

r

u s

v

1

2

G1

r

u s

v

2

2

2

2

G2

r

u s

v

3

G3 = G

• G2 violates the condition, yet the instance is submodular.



First step

• Submodularity characterization for k = 2:

The vertices of every cycle in G1 are adjacent to r
or pairwise adjacent.

• A natural extension:

The vertices of every cycle in Gi are adjacent to r
or pairwise adjacent, for all i < k.

• This condition is too strong.

r

u s

v

1

2

G1

r

u s

v

2

2

2

2

G2

r

u s

v

3

G3 = G

• G2 violates the condition, yet the instance is submodular.



First step

• Submodularity characterization for k = 2:

The vertices of every cycle in G1 are adjacent to r
or pairwise adjacent.

• A natural extension:

The vertices of every cycle in Gi are adjacent to r
or pairwise adjacent, for all i < k.

• This condition is too strong.

r

u s

v

1

2

G1

r

u s

v

2

2

2

2

G2

r

u s

v

3

G3 = G

• G2 violates the condition, yet the instance is submodular.



First step

• Submodularity characterization for k = 2:

The vertices of every cycle in G1 are adjacent to r
or pairwise adjacent.

• A natural extension:

The vertices of every cycle in Gi are adjacent to r
or pairwise adjacent, for all i < k.

• This condition is too strong.

r

u s

v

1

2

G1

r

u s

v

2

2

2

2

G2

r

u s

v

3

G3 = G

• G2 violates the condition, yet the instance is submodular.



First step

• Submodularity characterization for k = 2:

The vertices of every cycle in G1 are adjacent to r
or pairwise adjacent.

• A natural extension:

The vertices of every cycle in Gi are adjacent to r
or pairwise adjacent, for all i < k.

• This condition is too strong.

r

u s

v

1

2

G1

r

u s

v

2

2

2

2

G2

r

u s

v

3

G3 = G

• G2 violates the condition, yet the instance is submodular.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f 1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f

1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f

1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f

1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f 1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f 1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f 1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k .

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Def. Given a cycle C and a chord f = uv , let P1 and P2 denote the two
u-v paths in C .

I f covers C if w(f ) ≥ w(e) for all e ∈ E (P1) or e ∈ E (P2).

I C is well-covered if it is covered by all of its chords.

u

v

P1 P2f 1

3

1

1

2

Def. A cycle is violated if it is well-covered but its vertices are neither
adjacent to r nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k .

I Coincides with [Kobayashi & Okamoto ’14] when k = 2.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r

r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r

r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r

r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

• Recall some basic structures:

I Hole.

I Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r .

Def. An induced diamond is bad if its hamiltonian cycle is well-covered
but at least one of its tips is not adjacent to r .

r r r

Lemma 2: If the instance is submodular, then there are no bad holes or
bad induced diamonds in Gi for all i < k .



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r

s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Violated cycles

Lemma 1: If the instance is submodular, then there are no violated
cycles in Gi for all i < k.

Proof: Contrapositive.

I Let j be the smallest integer such that Gj has a violated cycle.

I Pick the smallest violated cycle C in Gj .

I We may assume that C has a chord.

I Claim: The subcycles of C formed by any chord are well-covered.

I Suppose r ∈ V (C ).

r s

I C is a bad induced diamond. (We skip the case r /∈ V (C ).)

Remark: Violated cycles can be detected in polynomial time.



Is this sufficient?

• Recall our example:

r

u s

v

G1

r

u s

v

G2

r

u s

v

G3 = G

fuv ({r , s}) = mst({r , s, u}) + mst({r , s, v})−mst({r , s})−mst({r , s, u, v})

= 2w2 + 2w2 − w3 − (w1 + 2w2)

= 2w2 − w1 − w3 ←− can be made negative



Is this sufficient?

• Recall our example:

r

u s

v

G1

r

u s

v

G2

r

u s

v

G3 = G

fuv ({r , s}) = mst({r , s, u}) + mst({r , s, v})−mst({r , s})−mst({r , s, u, v})

= 2w2 + 2w2 − w3 − (w1 + 2w2)

= 2w2 − w1 − w3 ←− can be made negative



Is this sufficient?

• Recall our example:

r

u s

v

G1

r

u s

v

G2

r

u s

v

G3 = G

fuv ({r , s}) = mst({r , s, u}) + mst({r , s, v})−mst({r , s})−mst({r , s, u, v})

= 2w2 + 2w2 − w3 − (w1 + 2w2)

= 2w2 − w1 − w3 ←− can be made negative



Is this sufficient?

• Recall our example:

r

u s

v

G1

r

u s

v

G2

r

u s

v

G3 = G

fuv ({r , s}) = mst({r , s, u}) + mst({r , s, v})−mst({r , s})−mst({r , s, u, v})
= 2w2 + 2w2 − w3 − (w1 + 2w2)

= 2w2 − w1 − w3 ←− can be made negative



Is this sufficient?

• Recall our example:

r

u s

v

G1

r

u s

v

G2

r

u s

v

G3 = G

fuv ({r , s}) = mst({r , s, u}) + mst({r , s, v})−mst({r , s})−mst({r , s, u, v})
= 2w2 + 2w2 − w3 − (w1 + 2w2)

= 2w2 − w1 − w3

←− can be made negative



Is this sufficient?

• Recall our example:

r

u s

v

G1

r

u s

v

G2

r

u s

v

G3 = G

fuv ({r , s}) = mst({r , s, u}) + mst({r , s, v})−mst({r , s})−mst({r , s, u, v})
= 2w2 + 2w2 − w3 − (w1 + 2w2)

= 2w2 − w1 − w3 ←− can be made negative



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Candidate edge

• Denote (?) as the following property:

There are no violated cycles in Gi for all i < k.

Lemma 4?: If S 6⊆ N̂uv , then fuv (S) = 0.

I If r /∈ N̂(uv), then S 6⊆ N̂(uv) for all S ∈ Suv .

I So we can skip these edges!

Def. An edge uv is a candidate edge if r ∈ N̂(uv).

Lemma 5?: Assume fuv (N̂(uv)) ≥ 0 for every candidate edge uv . Then,
fuv is inclusion-wise nonincreasing in N̂(uv) for every candidate edge uv .



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k.

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Putting it all together

Theorem: The spanning tree game on G is submodular if and only if:

1 There are no violated cycles in Gi for all i < k .

2 For every candidate edge uv , fuv (N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof:
(⇒) Assume the game is submodular.

I Condition 1 is satisfied by Lemma 1.

I Condition 2 is satisfied trivially.

(⇐) Assume Conditions 1 and 2 are satisfied.

I Let u, v ∈ N and S ∈ Suv .

I If S 6⊆ N̂(uv), then fuv (S) = 0 by Lemma 4.

I If S ⊆ N̂(uv), then fuv (S) ≥ fuv (N̂(uv)) ≥ 0 by Lemma 5.



Thank you!


