An Efficient Characterization of Submodular Spanning Tree Games

Zhuan Khye Koh Laura Sanità

Setting: A set of players *N* who are allowed to cooperate.

Setting: A set of players *N* who are allowed to cooperate.

Goal: Distribute **cost** or revenue among them.

Setting: A set of players *N* who are allowed to cooperate.

Goal: Distribute **cost** or revenue among them.

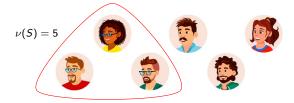
• To model cooperation, we use a characteristic function $\nu: 2^N \to \mathbb{R}$.

Setting: A set of players *N* who are allowed to cooperate.

Goal: Distribute **cost** or revenue among them.

To model cooperation, we use a characteristic function ν : 2^N → ℝ.
 ν(S) = total cost paid by the players in S if they form a coalition.

Setting: A set of players *N* who are allowed to cooperate.



Goal: Distribute **cost** or revenue among them.

To model cooperation, we use a characteristic function ν : 2^N → ℝ.
 ν(S) = total cost paid by the players in S if they form a coalition.

Setting: A set of players *N* who are allowed to cooperate.

Goal: Distribute **cost** or revenue among them.

To model cooperation, we use a characteristic function ν : 2^N → ℝ.
 ν(S) = total cost paid by the players in S if they form a coalition.

Setting: A set of players *N* who are allowed to cooperate.

Goal: Distribute **cost** or revenue among them.

- To model cooperation, we use a characteristic function ν : 2^N → ℝ.
 ν(S) = total cost paid by the players in S if they form a coalition.
- An instance of the game is defined by (N, ν) .

Setting: A set of players *N* who are allowed to cooperate.

Goal: Distribute **cost** or revenue among them.

- To model cooperation, we use a characteristic function ν : 2^N → ℝ.
 ν(S) = total cost paid by the players in S if they form a coalition.
- An instance of the game is defined by (N, ν) .
- An outcome of the game is an allocation $y \in \mathbb{R}^N$ such that

$$\sum_{\nu\in N}y_{\nu}=\nu(N).$$

• Many criteria for evaluating an allocation:

• Many criteria for evaluating an allocation:

Fairness - Is every agent charged proportionally to its contribution?

- Many criteria for evaluating an allocation:
 - **Fairness** Is every agent charged proportionally to its contribution?
 - **Stability** Are there any incentives to cooperate?

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - Stability Are there any incentives to cooperate?

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - Stability Are there any incentives to cooperate?

• Core:
$$\sum_{v \in S} y_v \leq \nu(S)$$
 for all $S \subseteq N$.

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - Stability Are there any incentives to cooperate?



• Core:
$$\sum_{v \in S} y_v \leq \nu(S)$$
 for all $S \subseteq N$.

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - **Stability** Are there any incentives to cooperate?

• Core:
$$\sum_{v \in S} y_v \leq \nu(S)$$
 for all $S \subseteq N$.

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - **Stability** Are there any incentives to cooperate?

• Core:
$$\sum_{v \in S} y_v \leq \nu(S)$$
 for all $S \subseteq N$.

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - Stability Are there any incentives to cooperate?

- We use solution concepts. Some popular ones include:
 - Core: $\sum_{v \in S} y_v \leq \nu(S)$ for all $S \subseteq N$.
 - Shapley value, nucleolus, kernel, bargaining set, stable set, ...

- Many criteria for evaluating an allocation:
 - Fairness Is every agent charged proportionally to its contribution?
 - Stability Are there any incentives to cooperate?

- We use solution concepts. Some popular ones include:
 - Core: $\sum_{v \in S} y_v \leq \nu(S)$ for all $S \subseteq N$.
 - Shapley value, nucleolus, kernel, bargaining set, stable set, ...
- Generally hard to compute unless ν satisfies certain properties.

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

• Equivalently, for any $S \subseteq T \subseteq N$ and $u \in N \setminus T$,

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

• "Snowballing" effect.

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

• Equivalently, for any $S \subseteq T \subseteq N$ and $u \in N \setminus T$,

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

• "Snowballing" effect.

• Some advantages of submodularity:

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

- "Snowballing" effect.
- Some advantages of submodularity:
 - ▶ [Shapley '71] A core solution exists and can be computed efficiently.

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

- "Snowballing" effect.
- Some advantages of submodularity:
 - ▶ [Shapley '71] A core solution exists and can be computed efficiently.
 - Core membership is easy.

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

- "Snowballing" effect.
- Some advantages of submodularity:
 - Shapley '71] A core solution exists and can be computed efficiently.
 - Core membership is easy.
 - [Kuipers '96] The nucleolus can be computed efficiently.

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

- "Snowballing" effect.
- Some advantages of submodularity:
 - Shapley '71] A core solution exists and can be computed efficiently.
 - Core membership is easy.
 - [Kuipers '96] The nucleolus can be computed efficiently.
- Q. Can we characterize submodular instances of a cooperative game?

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

- "Snowballing" effect.
- Some advantages of submodularity:
 - Shapley '71] A core solution exists and can be computed efficiently.
 - Core membership is easy.
 - [Kuipers '96] The nucleolus can be computed efficiently.
- Q. Can we characterize submodular instances of a cooperative game?
 - ▶ [van den Nouweland & Borm '91] Communication game.

Def. A game is submodular/convex if for any $S, T \subseteq N$,

$$\nu(S) + \nu(T) \geq \nu(S \cup T) + \nu(S \cap T).$$

$$\nu(S \cup u) - \nu(S) \geq \nu(T \cup u) - \nu(T).$$

- "Snowballing" effect.
- Some advantages of submodularity:
 - Shapley '71] A core solution exists and can be computed efficiently.
 - Core membership is easy.
 - [Kuipers '96] The nucleolus can be computed efficiently.
- Q. Can we characterize submodular instances of a cooperative game?
 - ▶ [van den Nouweland & Borm '91] Communication game.
 - [Okamoto '03] Coloring game and vertex cover game.

• Introduced by [Claus & Kleitman '73].

• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

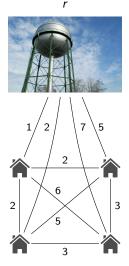
Goal: Distribute the cost of the tree.

• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

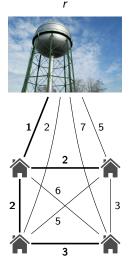


• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

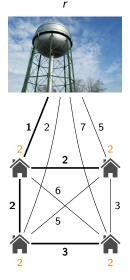


• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.



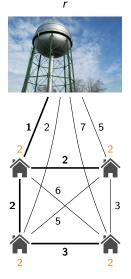
• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted complete graph G = (V, E) where $V = N \cup r$.



• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

• An instance is defined by an edge-weighted complete graph G = (V, E) where $V = N \cup r$.

• The clients can cooperate.



• Introduced by [Claus & Kleitman '73].

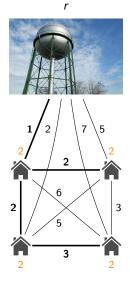
Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

- An instance is defined by an edge-weighted complete graph G = (V, E) where $V = N \cup r$.
- The clients can cooperate.

• For $S \subseteq N$, $\nu(S)$ is the cost of a minimum spanning tree in $G[S \cup r]$.



• Introduced by [Claus & Kleitman '73].

Setting: A set of clients N would like to be connected to a source r.

Cheapest solution is a minimum spanning tree.

Goal: Distribute the cost of the tree.

- An instance is defined by an edge-weighted complete graph G = (V, E) where $V = N \cup r$.
- The clients can cooperate.

• For $S \subseteq N$, $\nu(S)$ is the cost of a minimum spanning tree in $G[S \cup r]$.

• Not submodular.

- Not submodular.
- [Bird '76] proposed an allocation scheme.

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.
- [Granot & Huberman '82] The game is permutationally convex.

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.
- [Granot & Huberman '82] The game is permutationally convex.
 - There exists an ordering 1, 2, ..., n of the players such that for any j ≤ k and S ⊆ N \ [k],

$$\nu([j]\cup S)-\nu([j])\geq \nu([k]\cup S)-\nu([k]).$$

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.
- [Granot & Huberman '82] The game is permutationally convex.
 - There exists an ordering 1, 2, ..., n of the players such that for any $j \le k$ and $S \subseteq N \setminus [k]$,

$$\nu([j]\cup S)-\nu([j])\geq \nu([k]\cup S)-\nu([k]).$$

Generalizes submodularity.

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.
- [Granot & Huberman '82] The game is permutationally convex.
 - There exists an ordering 1, 2, ..., n of the players such that for any $j \le k$ and $S \subseteq N \setminus [k]$,

$$u([j] \cup S) - \nu([j]) \ge \nu([k] \cup S) - \nu([k]).$$

Generalizes submodularity.

• [Faigle et al. '97] Core membership is co-NP-hard.

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.
- [Granot & Huberman '82] The game is permutationally convex.
 - There exists an ordering 1, 2, ..., n of the players such that for any $j \le k$ and $S \subseteq N \setminus [k]$,

$$\nu([j] \cup S) - \nu([j]) \ge \nu([k] \cup S) - \nu([k]).$$

- Generalizes submodularity.
- [Faigle et al. '97] Core membership is co-NP-hard.
- [Faigle et al. '98] Computing the nucleolus is NP-hard.

- Not submodular.
- [Bird '76] proposed an allocation scheme.
- [Granot & Huberman '81] Bird's allocation is a core solution.
- [Granot & Huberman '82] The game is permutationally convex.
 - There exists an ordering 1, 2, ..., n of the players such that for any $j \le k$ and $S \subseteq N \setminus [k]$,

$$u([j] \cup S) - \nu([j]) \ge \nu([k] \cup S) - \nu([k]).$$

Generalizes submodularity.

- [Faigle et al. '97] Core membership is co-NP-hard.
- [Faigle et al. '98] Computing the nucleolus is NP-hard.

Can we find an efficient characterization of submodular instances?

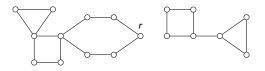
• [Kobayashi & Okamoto '14] characterized submodularity when G has only **two** distinct edge-weights.

• Let G_1 be the subgraph spanned by the cheaper edges.

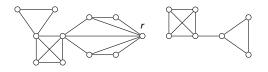
- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.

- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.
- Efficiently testable using block decomposition.

- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.
- Efficiently testable using block decomposition.

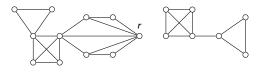


- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.
- Efficiently testable using block decomposition.



• [Kobayashi & Okamoto '14] characterized submodularity when G has only **two** distinct edge-weights.

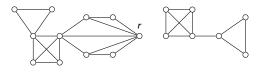
- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.
- Efficiently testable using block decomposition.



• For general weights, they stated some sufficient conditions and some necessary conditions. [Trudeau '12] also gave a sufficient condition.

• [Kobayashi & Okamoto '14] characterized submodularity when G has only **two** distinct edge-weights.

- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.
- Efficiently testable using block decomposition.

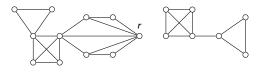


• For general weights, they stated some sufficient conditions and some necessary conditions. [Trudeau '12] also gave a sufficient condition.

• It was conjectured that testing submodularity is co-NP-complete.

• [Kobayashi & Okamoto '14] characterized submodularity when G has only **two** distinct edge-weights.

- Let G_1 be the subgraph spanned by the cheaper edges.
- Submodular ⇔ The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.
- Efficiently testable using block decomposition.



• For general weights, they stated some sufficient conditions and some necessary conditions. [Trudeau '12] also gave a sufficient condition.

- It was conjectured that testing submodularity is co-NP-complete.
- In this work, we **fully** characterize submodular instances. This characterization can be verified in **polynomial time**.

Def. An instance is submodular if for any $S \subseteq N$ and $u, v \in N \setminus S$, $\nu(S \cup u) + \nu(S \cup v) - \nu(S) - \nu(S \cup \{u, v\}) \ge 0$

Def. An instance is submodular if for any $S \subseteq N$ and $u, v \in N \setminus S$, $\nu(S \cup u) + \nu(S \cup v) - \nu(S) - \nu(S \cup \{u, v\}) \ge 0$

Def. An instance is submodular if for any $S \subseteq N$ and $u, v \in N \setminus S$, $\nu(S \cup u) + \nu(S \cup v) - \nu(S) - \nu(S \cup \{u, v\}) \ge 0$

• For
$$u, v \in N$$
, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}$.

Def. An instance is submodular if for any $S \subseteq N$ and $u, v \in N \setminus S$, $mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

• For
$$u, v \in N$$
, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}$.

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

• For
$$u, v \in N$$
, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}$.

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $f_{uv}(S) := mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

- For $S \subseteq V$, mst(S) := cost of a minimum spanning tree in G[S].
- For $u, v \in N$, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}.$

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $f_{uv}(S) := mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

- For $S \subseteq V$, mst(S) := cost of a minimum spanning tree in G[S].
- For $u, v \in N$, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}.$
- Sort the edge weights $w_1 < w_2 < \cdots < w_k$.

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $f_{uv}(S) := mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

- For $S \subseteq V$, mst(S) := cost of a minimum spanning tree in G[S].
- For $u, v \in N$, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}.$
- Sort the edge weights $w_1 < w_2 < \cdots < w_k$.
- Define the subgraph $G_i := (V, E_i)$ where $E_i = \{e \in E : w(e) \le w_i\}$.

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $f_{uv}(S) := mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

- For $S \subseteq V$, mst(S) := cost of a minimum spanning tree in G[S].
- For $u, v \in N$, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}.$
- Sort the edge weights $w_1 < w_2 < \cdots < w_k$.
- Define the subgraph $G_i := (V, E_i)$ where $E_i = \{e \in E : w(e) \le w_i\}$.

Def. The expensive neighborhood of an edge uv is

 $\hat{N}(uv) := \left\{ s \in V : w(su) > w(uv) \text{ or } w(sv) > w(uv) \right\}.$

Preliminaries

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $f_{uv}(S) := mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

- For $S \subseteq V$, mst(S) := cost of a minimum spanning tree in G[S].
- For $u, v \in N$, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}.$
- Sort the edge weights $w_1 < w_2 < \cdots < w_k$.
- Define the subgraph $G_i := (V, E_i)$ where $E_i = \{e \in E : w(e) \le w_i\}$.

Def. The expensive neighborhood of an edge uv is

 $\hat{N}(uv) := \left\{ s \in V : w(su) > w(uv) \text{ or } w(sv) > w(uv) \right\}.$

Preliminaries

Def. An instance is submodular if for any $u, v \in N$ and $S \subseteq S_{uv}$, $f_{uv}(S) := mst(S \cup u) + mst(S \cup v) - mst(S) - mst(S \cup \{u, v\}) \ge 0$

- For $S \subseteq V$, mst(S) := cost of a minimum spanning tree in G[S].
- For $u, v \in N$, $S_{uv} := \{S \subseteq V : r \in S \text{ and } u, v \notin S\}.$
- Sort the edge weights $w_1 < w_2 < \cdots < w_k$.
- Define the subgraph $G_i := (V, E_i)$ where $E_i = \{e \in E : w(e) \le w_i\}$.

Def. The expensive neighborhood of an edge uv is

 $\hat{N}(uv) := \left\{ s \in V : w(su) > w(uv) \text{ or } w(sv) > w(uv) \right\}.$

Main result

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

• Submodularity characterization for k = 2:

The vertices of every cycle in G₁ are adjacent to r or pairwise adjacent.

• Submodularity characterization for k = 2:

The vertices of every cycle in G_1 are adjacent to r or pairwise adjacent.

• A natural extension:

The vertices of every cycle in G_i are adjacent to r or pairwise adjacent, for all i < k.

• Submodularity characterization for k = 2:

The vertices of every cycle in G_1 are adjacent to r or pairwise adjacent.

• A natural extension:

The vertices of every cycle in G_i are adjacent to r or pairwise adjacent, for all i < k.

• This condition is too strong.

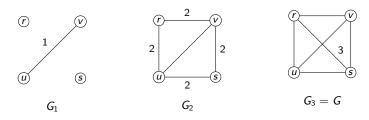
• Submodularity characterization for k = 2:

The vertices of every cycle in G_1 are adjacent to r or pairwise adjacent.

• A natural extension:

The vertices of every cycle in G_i are adjacent to r or pairwise adjacent, for all i < k.

• This condition is too strong.



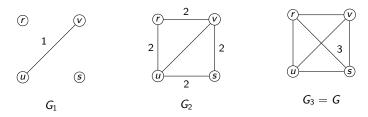
• Submodularity characterization for k = 2:

The vertices of every cycle in G_1 are adjacent to r or pairwise adjacent.

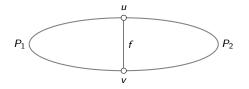
• A natural extension:

The vertices of every cycle in G_i are adjacent to r or pairwise adjacent, for all i < k.

• This condition is too strong.

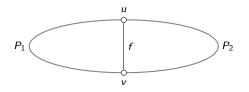


• G_2 violates the condition, yet the instance is submodular.

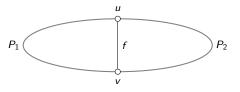


Def. Given a cycle C and a chord f = uv, let P_1 and P_2 denote the two u-v paths in C.

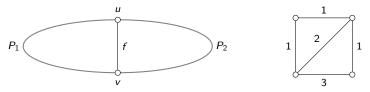
• f covers C if $w(f) \ge w(e)$ for all $e \in E(P_1)$ or $e \in E(P_2)$.



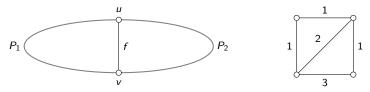
- f covers C if $w(f) \ge w(e)$ for all $e \in E(P_1)$ or $e \in E(P_2)$.
- *C* is well-covered if it is covered by all of its chords.



- f covers C if $w(f) \ge w(e)$ for all $e \in E(P_1)$ or $e \in E(P_2)$.
- *C* is well-covered if it is covered by all of its chords.



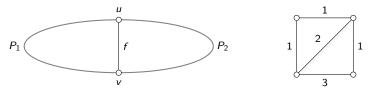
- f covers C if $w(f) \ge w(e)$ for all $e \in E(P_1)$ or $e \in E(P_2)$.
- *C* is well-covered if it is covered by all of its chords.



Def. A cycle is violated if it is well-covered but its vertices are neither adjacent to *r* nor pairwise adjacent.

Def. Given a cycle C and a chord f = uv, let P_1 and P_2 denote the two u-v paths in C.

- f covers C if $w(f) \ge w(e)$ for all $e \in E(P_1)$ or $e \in E(P_2)$.
- *C* is well-covered if it is covered by all of its chords.

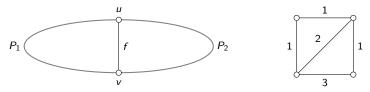


Def. A cycle is violated if it is well-covered but its vertices are neither adjacent to *r* nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no **violated** cycles in G_i for all i < k.

Def. Given a cycle C and a chord f = uv, let P_1 and P_2 denote the two u-v paths in C.

- f covers C if $w(f) \ge w(e)$ for all $e \in E(P_1)$ or $e \in E(P_2)$.
- *C* is well-covered if it is covered by all of its chords.



Def. A cycle is violated if it is well-covered but its vertices are neither adjacent to *r* nor pairwise adjacent.

Lemma 1: If the instance is submodular, then there are no **violated** cycles in G_i for all i < k.

• Coincides with [Kobayashi & Okamoto '14] when k = 2.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

• Recall some basic structures:

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Recall some basic structures:
 - ► Hole.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Recall some basic structures:
 - ► Hole.
 - Diamond. The degree-two vertices are called tips.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

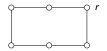
- Recall some basic structures:
 - ► Hole.
 - Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Recall some basic structures:
 - ► Hole.
 - Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r.



Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Recall some basic structures:
 - ► Hole.
 - Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to *r*.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

• Recall some basic structures:

► Hole.

Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r.

Def. An induced diamond is bad if its hamiltonian cycle is well-covered but at least one of its tips is not adjacent to r.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

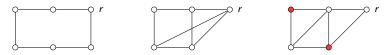
• Recall some basic structures:

► Hole.

Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to r.

Def. An induced diamond is bad if its hamiltonian cycle is well-covered but at least one of its tips is not adjacent to r.



Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

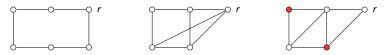
• Recall some basic structures:

► Hole.

Diamond. The degree-two vertices are called tips.

Def. A hole is bad if at least one of its vertices is not adjacent to *r*.

Def. An induced diamond is bad if its hamiltonian cycle is well-covered but at least one of its tips is not adjacent to r.



Lemma 2: If the instance is submodular, then there are no bad holes or bad induced diamonds in G_i for all i < k.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

Proof: Contrapositive.

• Let j be the smallest integer such that G_j has a violated cycle.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- ▶ Pick the smallest violated cycle C in G_j .

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

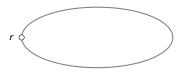
- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- We may assume that *C* has a chord.

Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.

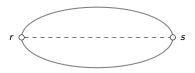
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



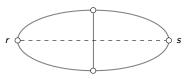
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



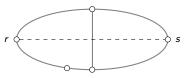
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- ▶ We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



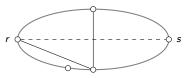
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- ▶ We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



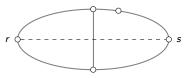
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



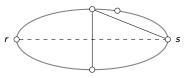
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- ▶ We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

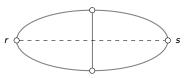
- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- ▶ We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

Proof: Contrapositive.

- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- ▶ We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.

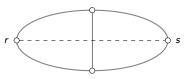


• C is a bad induced diamond. (We skip the case $r \notin V(C)$.)

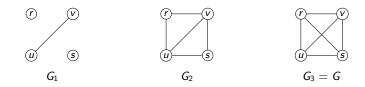
Lemma 1: If the instance is submodular, then there are no violated cycles in G_i for all i < k.

Proof: Contrapositive.

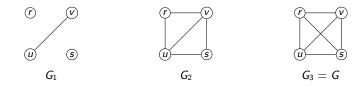
- Let j be the smallest integer such that G_j has a violated cycle.
- Pick the smallest violated cycle C in G_j .
- ▶ We may assume that *C* has a chord.
- **Claim:** The subcycles of *C* formed by any chord are well-covered.
- Suppose $r \in V(C)$.



► *C* is a bad induced diamond. (We skip the case $r \notin V(C)$.) **Remark:** Violated cycles can be detected in polynomial time.

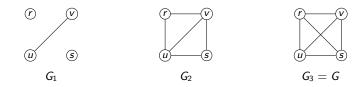


 $f_{uv}(\{r,s\}) = mst(\{r,s,u\}) + mst(\{r,s,v\}) - mst(\{r,s\}) - mst(\{r,s,u,v\})$



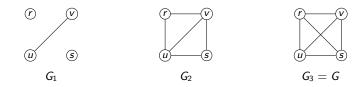
$$f_{uv}(\{r,s\}) = mst(\{r,s,u\}) + mst(\{r,s,v\}) - mst(\{r,s\}) - mst(\{r,s,u,v\})$$

= 2w₂ + 2w₂ - w₃ - (w₁ + 2w₂)



$$f_{uv}(\{r,s\}) = mst(\{r,s,u\}) + mst(\{r,s,v\}) - mst(\{r,s\}) - mst(\{r,s,u,v\})$$

= 2w₂ + 2w₂ - w₃ - (w₁ + 2w₂)
= 2w₂ - w₁ - w₃



$$f_{uv}(\{r, s\}) = mst(\{r, s, u\}) + mst(\{r, s, v\}) - mst(\{r, s\}) - mst(\{r, s, u, v\})$$

= 2w₂ + 2w₂ - w₃ - (w₁ + 2w₂)
= 2w₂ - w₁ - w₃ \leftarrow can be made negative

• Denote (*) as the following property:

There are no violated cycles in G_i for all i < k.

• Denote (*) as the following property:

There are no violated cycles in G_i for all i < k.

Lemma 4*: If $S \not\subseteq \hat{N}_{uv}$, then $f_{uv}(S) = 0$.

• Denote (*) as the following property:

There are no violated cycles in G_i for all i < k.

Lemma 4*: If $S \not\subseteq \hat{N}_{uv}$, then $f_{uv}(S) = 0$.

▶ If $r \notin \hat{N}(uv)$, then $S \not\subseteq \hat{N}(uv)$ for all $S \in S_{uv}$.

• Denote (\star) as the following property:

There are no violated cycles in G_i for all i < k.

Lemma 4*: If $S \not\subseteq \hat{N}_{uv}$, then $f_{uv}(S) = 0$.

- ▶ If $r \notin \hat{N}(uv)$, then $S \not\subseteq \hat{N}(uv)$ for all $S \in S_{uv}$.
- So we can skip these edges!

• Denote (\star) as the following property:

There are no violated cycles in G_i for all i < k.

Lemma 4*: If $S \not\subseteq \hat{N}_{uv}$, then $f_{uv}(S) = 0$.

▶ If
$$r \notin \hat{N}(uv)$$
, then $S \not\subseteq \hat{N}(uv)$ for all $S \in \mathcal{S}_{uv}$.

So we can skip these edges!

Def. An edge uv is a candidate edge if $r \in \hat{N}(uv)$.

• Denote (*) as the following property:

There are no violated cycles in G_i for all i < k.

Lemma 4*: If $S \not\subseteq \hat{N}_{uv}$, then $f_{uv}(S) = 0$.

▶ If
$$r \notin \hat{N}(uv)$$
, then $S \not\subseteq \hat{N}(uv)$ for all $S \in \mathcal{S}_{uv}$.

So we can skip these edges!

Def. An edge uv is a candidate edge if $r \in \hat{N}(uv)$.

Lemma 5^{*}: Assume $f_{uv}(\hat{N}(uv)) \ge 0$ for every candidate edge uv. Then, f_{uv} is inclusion-wise nonincreasing in $\hat{N}(uv)$ for every candidate edge uv.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

 (\Rightarrow) Assume the game is submodular.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- **2** For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

 (\Rightarrow) Assume the game is submodular.

• Condition 1 is satisfied by Lemma 1.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

- (\Rightarrow) Assume the game is submodular.
 - Condition 1 is satisfied by Lemma 1.
 - Condition 2 is satisfied trivially.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

- (\Rightarrow) Assume the game is submodular.
 - Condition 1 is satisfied by Lemma 1.
 - Condition 2 is satisfied trivially.
- (\Leftarrow) Assume Conditions 1 and 2 are satisfied.

Theorem: The spanning tree game on G is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

 (\Rightarrow) Assume the game is submodular.

- Condition 1 is satisfied by Lemma 1.
- Condition 2 is satisfied trivially.
- (\Leftarrow) Assume Conditions 1 and 2 are satisfied.

• Let $u, v \in N$ and $S \in S_{uv}$.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

- (\Rightarrow) Assume the game is submodular.
 - Condition 1 is satisfied by Lemma 1.
 - Condition 2 is satisfied trivially.
- (\Leftarrow) Assume Conditions 1 and 2 are satisfied.
 - Let $u, v \in N$ and $S \in S_{uv}$.
 - If $S \not\subseteq \hat{N}(uv)$, then $f_{uv}(S) = 0$ by Lemma 4.

Theorem: The spanning tree game on *G* is submodular if and only if:

- **1** There are no violated cycles in G_i for all i < k.
- 2 For every candidate edge uv, $f_{uv}(\hat{N}(uv)) \ge 0$.

Furthermore, these conditions can be verified in polynomial time.

Proof:

- (\Rightarrow) Assume the game is submodular.
 - Condition 1 is satisfied by Lemma 1.
 - Condition 2 is satisfied trivially.
- (\Leftarrow) Assume Conditions 1 and 2 are satisfied.
 - Let $u, v \in N$ and $S \in S_{uv}$.
 - If $S \not\subseteq \hat{N}(uv)$, then $f_{uv}(S) = 0$ by Lemma 4.
 - ▶ If $S \subseteq \hat{N}(uv)$, then $f_{uv}(S) \ge f_{uv}(\hat{N}(uv)) \ge 0$ by Lemma 5.

Thank you!