An Accelerated Newton—Dinkelbach Method and
its Application to Two Variables Per Inequality
Systems

Daniel Dadush Z.K. Koh Bento Natura L3szlé A. Végh

THE LONDON SCHOOL

or ECONOMICS anp

POLITICAL SCIENCE W
Centrum Wiskunde & Informatica

Linear fractional optimization

e Given a closed domain D C R™ and ¢, d € R™ where d"x > 0 for all

x € D, solve
-

. Cc X
inf <.
xeD d'x

o If D C {0,1}" it is called

e E.g. Minimum cost-to-time ratio cycle, minimum ratio spanning tree.
e Megiddo invented to solve this problem.

Requires: An affine algorithm for the problem minyep ¢ x.

e Parametric search simulates this algorithm for the problem

C e T
)r('réllr;(c dd) ' x

with the parameter § being indeterminate.

Newton—Dinkelbach method

e The function is concave, decreasing, piecewise-linear.
— mi _ T
f(9) _)E%'B(C dd) ' x.
o Let §* denote the optimal value. Then, f(§) =0 < § = d*.
e Use a root-finding technique like

Requires: An algorithm for the nonfractional problem min,ep ¢’ x.

L 1 |
T

é

5* 5(i+2) 5(i+1) 50
1
T
|
|
|

e Newton's method terminates in strongly polynomial number of
iterations [Radzik '92].

Linear fractional programming

e If D is a polyhedron, then the problem is a

e Let us not assume d ' x > 0 for all x € D. Instead, we solve

T

C X
inf —— s.t. d'x>0.
xED dTX

e The parametric function f : R — R U {—o0} is still concave and
piecewise-linear, but no longer decreasing.

—_ _ T
f(5)—X|2fD(c ad) ' x.

e f may not have a root.

Accelerating Newton—Dinkelbach

Idea: At the end of each iteration, to the point

6" =260+ — 50

e Overwrite the next point §0+1) < ¢ if we did not overshoot (&' > §*).
This can be checked via

—0 < f(§')<0 and f'(§') <O0.

Motivation: Runtime bottleneck caused by consecutive iterations in
which the gradient does not change by much. So, skip over them.

Bregman divergence

Def: For a concave function f, the is

De(6%,6D) = (6D + £/(6()(6* — 60)) — F(6¥)

e With acceleration, Df(5*,6()) < 2Df(5*,60~2)) for all i > 2.

Intuition: If look-ahead succeeded (8’ > §*), then we made significant
progress. Otherwise, we are not too far away from ¢*.

Linear fractional comb opt

Thm: For D C {0,1}", the Newton-Dinkelbach method
terminates in O(mlog m) iterations.

e O(m?log m) iterations without acceleration [Wang, Yang, Zhang '06].

Proof sketch:

e Foreach i > 1, f/(6)) = —d " x(") for some x() € D.
e Bregman divergence is a modified cost of x(7)
De(6*,60) = (c — 6*d) Tx.
e Bregman divergence halves every two iterations
0< (c—5d) <) < %(c — §*d)Tx-2)

e Such a sequence has length O(mlog m) [Goemans '92]. [

Two variables per inequality (2VPI) system

Problem: Given A € R™*" with at most 2 nonzero entries per row and
c € R™, find a feasible solution to Ay < ¢ or report infeasibility.

o WLOG, every inequality is of the form y, — vy, < ce, where v, > 0.

e Represent as a directed multigraph G on n nodes and m arcs, with arc
costs ¢ € R™ and v € RZ,.

(Ce1) 'Ye1)

oW

(cesrver)

e If the system is bounded and feasible, then it has a unique
solution y*, i.e.

y* >y for any feasible solution y.

History of 2VPI

e A quasipolynomial Fourier—Motzkin elimination [Nelson '78].

e Characterization of feasibility in terms of cycles and bicycles in G
[Shostak '81].

e The first weakly polynomial algorithm [Aspvall, Shiloach '79].

e Parametric search 4+ AS algorithm =- strongly polynomial algorithm
[Megiddo '83].

e Faster strongly polynomial algorithms [Cohen, Megiddo '94].
e The fastest strongly polynomial algorithm is also based on

Fourier-Motzkin elimination, with a running time of O(mn? log m)
[Hochbaum, Naor '94].

Pointwise maximal solution

o A directed cycle C is if HeeE(C) ve < 1.
(1,05) (~1,0.5) yu— 05y, <1

Y= O-5yw < -1
Yw — 2)/u S 0

(0,2)

e Flow-absorbing cycles induce upper bounds on the variables.

Yu—05by, <05 = y, <1
yw—=05y, <0 = y, <0
}’w*05)/w§1:>)/w§2

e Computing the pointwise maximal solution y* amounts to finding the
best cycle upper bounds.

Connection to linear fractional programming

e Primal-dual LPs for y;;

T

min ¢’ x max y,
s.t. netflow at u=1 st Yy —YeYw < ce Ve=vwvw € E.
netflow at v=0 Vv #u
x>0

e Our domain is D := {x > 0 : u has outflow 1, v has netflow 0 Vv # u}.

Yuv = 0.5

: : Xuv = 2» X =1
%x €D
Yvu = 1
e The primal LP is equivalent to the following linear fractional program
T
. c X .
inf ——— — s.t. 1 —inflow at v > 0.

xeD 1 —inflow at u

Connection to linear fractional programming

e Linear fractional program for y;!

. CTX

inf

nf ——— s.t. 1 —inflowat u>0.
xeD 1 —inflow at u

e For any 6 € R, the value of the parametric function f(0) is given by

min ¢'x — §(1 — inflow at u) max y, — 0
s.t. xeD st yy —7e0 < ce. Ve=wvued (u)
Yo — YeYw < e Ve=vw ¢ 6~ (u).

e (&) can be evaluated using a algorithm.

Yv = YeYw > Ce = Yv = Ce +VeYv

e Loop over the arc set for n times a la

Label-correcting algorithms

Shortest paths: Given a directed graph G = (V/, E) with arc costs
c € RE and a target node t, find a shortest path from every node to t.

e Can be formulated as a 2VPI system:
Yu—Y < cuy Yuv € E
ye=0

e The solution gives shortest path distances to t.

Label-correcting: Start with high values of y, and repeatedly correct
any violated contraints, i.e.

Yo=Y >Cw = Yut Gt Y
e Can this method be extended to general 2VPI systems?
(0,0.5)
Yu < 0.5y,
@ yv < 0.5y,

(0,0.5)

Label-correcting algorithm for 2VPI

e Start with a subsystem for which the solution y* is
trivial, and then progressively compute y* for larger subsystems.

Input: A 2VPI system (G, c,7).
Output: y* if the system is feasible; INFEASIBLE otherwise.

@ Initialize node labels y € R”
® k0, GO« (V0
© for each u c V:
G« G U 5t (u)
y* solution to the subsystem (G<+1) ¢, ~)
via accelerated Newton—Dinkelbach
if f does not have a root:
return INFEASIBLE
k<« k+1

O return y

Strongly polynomial analysis

Thm: For each subsystem (G¥), ¢,), the accelerated Newton's method
terminates in O(m) iterations.

Proof idea:
e For each i > 1, the Bregman divergence is the of a path
De(6*,60) = c*(P1)
e The Bregman divergence halves every two iterations
s p()y < L pli-2)
e This sequence of paths satisfy a certain property.
e After every 2 iterations, an arc ceases to appear in future paths. |

= Total running time O(m?n?).

Summary

o We accelerate the Newton—Dinkelbach method, and give an analysis
using Bregman divergence.

e Applications:
» A faster algorithm for linear fractional comb opt.

> An iterative O(m?n?) algorithm for 2VPI systems. This strengthens
a weakly polynomial result for Newton's method on deterministic
Markov Decision Process [Madani '02].

e Further questions:
» Can we make our algorithm competitive with Hochbaum—Naor's
O(mn? log m) algorithm? Is our analysis tight?
» Apply the accelerated Newton—Dinkelbach method to other
fractional optimization problems.

» Are there better acceleration schemes for the Newton—Dinkelbach
method?

Thank You!

