An Accelerated Newton-Dinkelbach Method and its Application to Two Variables Per Inequality Systems

Daniel Dadush Z.K. Koh Bento Natura László A. Végh

Linear fractional optimization

- Given a closed domain $\mathcal{D} \subseteq \mathbb{R}^{m}$ and $c, d \in \mathbb{R}^{m}$ where $d^{\top} x>0$ for all $x \in \mathcal{D}$, solve

$$
\inf _{x \in \mathcal{D}} \frac{c^{\top} x}{d^{\top} x}
$$

- If $\mathcal{D} \subseteq\{0,1\}^{m}$, it is called linear fractional combinatorial optimization.
- E.g. Minimum cost-to-time ratio cycle, minimum ratio spanning tree.
- Megiddo invented parametric search to solve this problem.

Requires: An affine algorithm for the nonfractional problem $\min _{x \in \mathcal{D}} c^{\top} x$.

- Parametric search simulates this algorithm for the problem

$$
\min _{x \in \mathcal{D}}(c-\delta d)^{\top} x
$$

with the parameter δ being indeterminate.

Newton-Dinkelbach method

- The parametric function is concave, decreasing, piecewise-linear.

$$
f(\delta)=\min _{x \in \mathcal{D}}(c-\delta d)^{\top} x
$$

- Let δ^{*} denote the optimal value. Then, $f(\delta)=0 \Longleftrightarrow \delta=\delta^{*}$.
- Use a root-finding technique like Newton's method.

Requires: An algorithm for the nonfractional problem $\min _{x \in \mathcal{D}} c^{\top} x$.

- Newton's method terminates in strongly polynomial number of iterations [Radzik '92].

Linear fractional programming

- If \mathcal{D} is a polyhedron, then the problem is a linear fractional program.
- Let us not assume $d^{\top} x>0$ for all $x \in \mathcal{D}$. Instead, we solve

$$
\inf _{x \in \mathcal{D}} \frac{c^{\top} x}{d^{\top} x} \quad \text { s.t. } d^{\top} x>0
$$

- The parametric function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{-\infty\}$ is still concave and piecewise-linear, but no longer decreasing.

$$
f(\delta)=\inf _{x \in \mathcal{D}}(c-\delta d)^{\top} x
$$

- f may not have a root.

Accelerating Newton-Dinkelbach

Idea: At the end of each iteration, look-ahead to the point

$$
\delta^{\prime}:=2 \delta^{(i+1)}-\delta^{(i)}
$$

- Overwrite the next point $\delta^{(i+1)} \leftarrow \delta^{\prime}$ if we did not overshoot $\left(\delta^{\prime} \geq \delta^{*}\right)$. This can be checked via

$$
-\infty<f\left(\delta^{\prime}\right)<0 \quad \text { and } \quad f^{\prime}\left(\delta^{\prime}\right)<0
$$

Motivation: Runtime bottleneck caused by consecutive iterations in which the gradient does not change by much. So, skip over them.

Bregman divergence

Def: For a concave function f, the Bregman divergence is

$$
D_{f}\left(\delta^{*}, \delta^{(i)}\right):=f\left(\delta^{(i)}\right)+f^{\prime}\left(\delta^{(i)}\right)\left(\delta^{*}-\delta^{(i)}\right)-f\left(\delta^{*}\right)
$$

- With acceleration, $D_{f}\left(\delta^{*}, \delta^{(i)}\right) \leq \frac{1}{2} D_{f}\left(\delta^{*}, \delta^{(i-2)}\right)$ for all $i>2$.

Intuition: If look-ahead succeeded ($\delta^{\prime} \geq \delta^{*}$), then we made significant progress. Otherwise, we are not too far away from δ^{*}.

Linear fractional comb opt

Thm: For $\mathcal{D} \subseteq\{0,1\}^{m}$, the look-ahead Newton-Dinkelbach method terminates in $O(m \log m)$ iterations.

- $O\left(m^{2} \log m\right)$ iterations without acceleration [Wang, Yang, Zhang '06].

Proof sketch:

- For each $i \geq 1, f^{\prime}\left(\delta^{(i)}\right)=-d^{\top} x^{(i)}$ for some $x^{(i)} \in \mathcal{D}$.
- Bregman divergence is a modified cost of $x^{(i)}$

$$
D_{f}\left(\delta^{*}, \delta^{(i)}\right)=\left(c-\delta^{*} d\right)^{\top} x^{(i)}
$$

- Bregman divergence halves every two iterations

$$
0 \leq\left(c-\delta^{*} d\right)^{\top} x^{(i)} \leq \frac{1}{2}\left(c-\delta^{*} d\right)^{\top} x^{(i-2)}
$$

- Such a sequence has length $O(m \log m)$ [Goemans ' 92].

Two variables per inequality (2VPI) system

Problem: Given $A \in \mathbb{R}^{m \times n}$ with at most 2 nonzero entries per row and $c \in \mathbb{R}^{m}$, find a feasible solution to $A y \leq c$ or report infeasibility.
-WLOG, every inequality is of the form $y_{u}-\gamma_{e} y_{v} \leq c_{e}$, where $\gamma_{e}>0$.

- Represent as a directed multigraph G on n nodes and m arcs, with arc costs $c \in \mathbb{R}^{m}$ and gain factors $\gamma \in \mathbb{R}_{>0}^{m}$.

- If the system is bounded and feasible, then it has a unique pointwise maximal solution y^{*}, i.e.

$$
y^{*} \geq y \quad \text { for any feasible solution } y .
$$

History of 2VPI

- A quasipolynomial Fourier-Motzkin elimination [Nelson '78].
- Characterization of feasibility in terms of cycles and bicycles in G [Shostak '81].
- The first weakly polynomial algorithm [Aspvall, Shiloach '79].
- Parametric search + AS algorithm \Rightarrow strongly polynomial algorithm [Megiddo '83].
- Faster strongly polynomial algorithms [Cohen, Megiddo '94].
- The fastest strongly polynomial algorithm is also based on Fourier-Motzkin elimination, with a running time of $O\left(m n^{2} \log m\right)$ [Hochbaum, Naor '94].

Pointwise maximal solution

- A directed cycle C is flow-absorbing if $\prod_{e \in E(C)} \gamma_{e}<1$.

$$
\begin{aligned}
y_{u}-0.5 y_{v} & \leq 1 \\
y_{v}-0.5 y_{w} & \leq-1 \\
y_{w}-2 y_{u} & \leq 0
\end{aligned}
$$

- Flow-absorbing cycles induce upper bounds on the variables.

$$
\begin{aligned}
y_{u}-0.5 y_{u} \leq 0.5 & \Longrightarrow y_{u} \leq 1 \\
y_{v}-0.5 y_{v} \leq 0 & \Longrightarrow y_{v} \leq 0 \\
y_{w}-0.5 y_{w} \leq 1 & \Longrightarrow y_{w} \leq 2
\end{aligned}
$$

- Computing the pointwise maximal solution y^{*} amounts to finding the best cycle upper bounds.

Connection to linear fractional programming

- Primal-dual LPs for y_{u}^{*}

$\min c^{\top} x$	$\max y_{u}$
s.t. netflow at $u=1$	s.t. $y_{v}-\gamma_{e} y_{w} \leq c_{e} \quad \forall e=v w \in E$.

$$
x \geq 0
$$

- Our domain is $\mathcal{D}:=\{x \geq 0: u$ has outflow $1, v$ has netflow $0 \forall v \neq u\}$.

$$
\begin{gathered}
x_{u v}=2, x_{v u}=1 \\
\frac{1}{2} x \in \mathcal{D}
\end{gathered}
$$

- The primal LP is equivalent to the following linear fractional program

$$
\inf _{x \in \mathcal{D}} \frac{c^{\top} x}{1-\text { inflow at } u} \quad \text { s.t. } 1-\text { inflow at } u>0 .
$$

Connection to linear fractional programming

- Linear fractional program for y_{u}^{*}

$$
\inf _{x \in \mathcal{D}} \frac{c^{\top} x}{1-\text { inflow at } u} \quad \text { s.t. } 1-\text { inflow at } u>0 .
$$

- For any $\delta \in \mathbb{R}$, the value of the parametric function $f(\delta)$ is given by

$$
\begin{array}{lll}
\min c^{\top} x-\delta(1-\text { inflow at } u) & \max y_{u}-\delta & \\
\text { s.t. } x \in \mathcal{D} & \text { s.t. } y_{v}-\gamma_{e} \delta \leq c_{e} & \forall e=v u \in \delta^{-}(u) \\
& y_{v}-\gamma_{e} y_{w} \leq c_{e} & \forall e=v w \notin \delta^{-}(u) .
\end{array}
$$

- $f(\delta)$ can be evaluated using a label-correcting algorithm.

$$
y_{v}-\gamma_{e} y_{w}>c_{e} \quad \Longrightarrow \quad y_{v} \leftarrow c_{e}+\gamma_{e} y_{v}
$$

- Loop over the arc set for n times à la Bellman-Ford.

Label-correcting algorithms

Shortest paths: Given a directed graph $G=(V, E)$ with arc costs $c \in \mathbb{R}^{E}$ and a target node t, find a shortest path from every node to t.

- Can be formulated as a 2VPI system:

$$
\begin{aligned}
y_{u}-y_{v} & \leq c_{u v} \quad \forall u v \in E \\
y_{t} & =0
\end{aligned}
$$

- The pointwise maximal solution gives shortest path distances to t.

Label-correcting: Start with high values of y, and repeatedly correct any violated contraints, i.e.

$$
y_{u}-y_{v}>c_{u v} \quad \Longrightarrow \quad y_{u} \leftarrow c_{u v}+y_{v}
$$

- Can this method be extended to general 2VPI systems?

$$
\begin{aligned}
& y_{u} \leq 0.5 y_{v} \\
& y_{v} \leq 0.5 y_{u}
\end{aligned}
$$

Label-correcting algorithm for 2VPI

- Start with a subsystem for which the pointwise maximal solution y^{*} is trivial, and then progressively compute y^{*} for larger subsystems.

Input: A 2VPI system (G, c, γ).
Output: y^{*} if the system is feasible; INFEASIBLE otherwise.
(1) Initialize node labels $y \in \mathbb{R}^{n}$
(2) $k \leftarrow 0, G^{(0)} \leftarrow(V, \emptyset)$
(3) for each $u \in V$:
$G^{(k+1)} \leftarrow G^{(k)} \cup \delta^{+}(u)$
$y^{*} \leftarrow$ pointwise maximal solution to the subsystem ($G^{(k+1)}, c, \gamma$) via accelerated Newton-Dinkelbach
if f does not have a root:
return INFEASIBLE
$k \leftarrow k+1$
(4) return y

Strongly polynomial analysis

Thm: For each subsystem $\left(G^{(k)}, c, \gamma\right)$, the accelerated Newton's method terminates in $O(m)$ iterations.

Proof idea:

- For each $i \geq 1$, the Bregman divergence is the reduced cost of a path

$$
D_{f}\left(\delta^{*}, \delta^{(i)}\right)=c^{*}\left(P^{(i)}\right)
$$

- The Bregman divergence halves every two iterations

$$
0 \leq c^{*}\left(P^{(i)}\right) \leq \frac{1}{2} c^{*}\left(P^{(i-2)}\right)
$$

- This sequence of paths satisfy a certain subpath monotonicity property.
- After every 2 iterations, an arc ceases to appear in future paths.
\Rightarrow Total running time $O\left(m^{2} n^{2}\right)$.

Summary

- We accelerate the Newton-Dinkelbach method, and give an analysis using Bregman divergence.
- Applications:
- A faster algorithm for linear fractional comb opt.
- An iterative $O\left(m^{2} n^{2}\right)$ algorithm for 2VPI systems. This strengthens a weakly polynomial result for Newton's method on deterministic Markov Decision Process [Madani '02].
- Further questions:
- Can we make our algorithm competitive with Hochbaum-Naor's $O\left(m n^{2} \log m\right)$ algorithm? Is our analysis tight?
- Apply the accelerated Newton-Dinkelbach method to other fractional optimization problems.
- Are there better acceleration schemes for the Newton-Dinkelbach method?

Thank You!

