
An Accelerated Newton–Dinkelbach Method and
its Application to Two Variables Per Inequality

Systems

Daniel Dadush Z.K. Koh Bento Natura László A. Végh



Linear fractional optimization

• Given a closed domain D ⊆ Rm and c , d ∈ Rm where d>x > 0 for all
x ∈ D, solve

inf
x∈D

c>x

d>x
.

• If D ⊆ {0, 1}m, it is called linear fractional combinatorial optimization.

• E.g. Minimum cost-to-time ratio cycle, minimum ratio spanning tree.

• Megiddo invented parametric search to solve this problem.

Requires: An affine algorithm for the nonfractional problem minx∈D c>x .

• Parametric search simulates this algorithm for the problem

min
x∈D

(c − δd)>x

with the parameter δ being indeterminate.



Newton–Dinkelbach method

• The parametric function is concave, decreasing, piecewise-linear.

f (δ) = min
x∈D

(c − δd)>x .

• Let δ∗ denote the optimal value. Then, f (δ) = 0 ⇐⇒ δ = δ∗.

• Use a root-finding technique like Newton’s method.

Requires: An algorithm for the nonfractional problem minx∈D c>x .

δ
δ(i)δ(i+1)δ(i+2)δ∗

• Newton’s method terminates in strongly polynomial number of
iterations [Radzik ’92].



Linear fractional programming

• If D is a polyhedron, then the problem is a linear fractional program.

• Let us not assume d>x > 0 for all x ∈ D. Instead, we solve

inf
x∈D

c>x

d>x
s. t. d>x > 0.

• The parametric function f : R→ R ∪ {−∞} is still concave and
piecewise-linear, but no longer decreasing.

f (δ) = inf
x∈D

(c − δd)>x .

• f may not have a root.

δ δ



Accelerating Newton–Dinkelbach

Idea: At the end of each iteration, look-ahead to the point

δ′ := 2δ(i+1) − δ(i)

δ
δ(i)δ(i+1)δ∗δ′

• Overwrite the next point δ(i+1) ← δ′ if we did not overshoot (δ′ ≥ δ∗).
This can be checked via

−∞ < f (δ′) < 0 and f ′(δ′) < 0.

Motivation: Runtime bottleneck caused by consecutive iterations in
which the gradient does not change by much. So, skip over them.



Bregman divergence

Def: For a concave function f , the Bregman divergence is

Df (δ∗, δ(i)) := f (δ(i)) + f ′(δ(i))(δ∗ − δ(i))− f (δ∗)

δ
δ(i)

δ∗

Df (δ
∗, δ(i))

• With acceleration, Df (δ∗, δ(i)) ≤ 1
2Df (δ∗, δ(i−2)) for all i > 2.

Intuition: If look-ahead succeeded (δ′ ≥ δ∗), then we made significant
progress. Otherwise, we are not too far away from δ∗.



Linear fractional comb opt

Thm: For D ⊆ {0, 1}m, the look-ahead Newton–Dinkelbach method
terminates in O(m logm) iterations.

• O(m2 logm) iterations without acceleration [Wang, Yang, Zhang ’06].

Proof sketch:

• For each i ≥ 1, f ′(δ(i)) = −d>x (i) for some x (i) ∈ D.

• Bregman divergence is a modified cost of x (i)

Df (δ∗, δ(i)) = (c − δ∗d)>x (i).

• Bregman divergence halves every two iterations

0 ≤ (c − δ∗d)>x (i) ≤ 1

2
(c − δ∗d)>x (i−2)

• Such a sequence has length O(m logm) [Goemans ’92]. �



Two variables per inequality (2VPI) system

Problem: Given A ∈ Rm×n with at most 2 nonzero entries per row and
c ∈ Rm, find a feasible solution to Ay ≤ c or report infeasibility.

• WLOG, every inequality is of the form yu − γeyv ≤ ce , where γe > 0.

• Represent as a directed multigraph G on n nodes and m arcs, with arc
costs c ∈ Rm and gain factors γ ∈ Rm

>0.

u v

(ce1 , γe1 )

(ce2 , γe2 )

• If the system is bounded and feasible, then it has a unique pointwise
maximal solution y∗, i.e.

y∗ ≥ y for any feasible solution y .



History of 2VPI

• A quasipolynomial Fourier–Motzkin elimination [Nelson ’78].

• Characterization of feasibility in terms of cycles and bicycles in G
[Shostak ’81].

• The first weakly polynomial algorithm [Aspvall, Shiloach ’79].

• Parametric search + AS algorithm ⇒ strongly polynomial algorithm
[Megiddo ’83].

• Faster strongly polynomial algorithms [Cohen, Megiddo ’94].

• The fastest strongly polynomial algorithm is also based on
Fourier–Motzkin elimination, with a running time of O(mn2 logm)
[Hochbaum, Naor ’94].



Pointwise maximal solution

• A directed cycle C is flow-absorbing if
∏

e∈E(C) γe < 1.

u

v

w

(1, 0.5) (−1, 0.5)

(0, 2)

yu − 0.5yv ≤ 1

yv − 0.5yw ≤ −1

yw − 2yu ≤ 0

• Flow-absorbing cycles induce upper bounds on the variables.

yu − 0.5yu ≤ 0.5 =⇒ yu ≤ 1

yv − 0.5yv ≤ 0 =⇒ yv ≤ 0

yw − 0.5yw ≤ 1 =⇒ yw ≤ 2

• Computing the pointwise maximal solution y∗ amounts to finding the
best cycle upper bounds.



Connection to linear fractional programming

• Primal-dual LPs for y∗u

min c>x

s. t. netflow at u = 1

netflow at v = 0 ∀v 6= u

x ≥ 0

max yu

s. t. yv − γeyw ≤ ce ∀e = vw ∈ E .

• Our domain is D := {x ≥ 0 : u has outflow 1, v has netflow 0 ∀v 6= u}.

u v

γuv = 0.5

γvu = 1

xuv = 2, xvu = 1

1
2
x ∈ D

• The primal LP is equivalent to the following linear fractional program

inf
x∈D

c>x

1− inflow at u
s. t. 1− inflow at u > 0.



Connection to linear fractional programming

• Linear fractional program for y∗u

inf
x∈D

c>x

1− inflow at u
s. t. 1− inflow at u > 0.

• For any δ ∈ R, the value of the parametric function f (δ) is given by

min c>x − δ(1− inflow at u)

s. t. x ∈ D
max yu − δ
s. t. yv − γeδ ≤ ce ∀e = vu ∈ δ−(u)

yv − γeyw ≤ ce ∀e = vw /∈ δ−(u).

• f (δ) can be evaluated using a label-correcting algorithm.

yv − γeyw > ce =⇒ yv ← ce + γeyv

• Loop over the arc set for n times à la Bellman–Ford.



Label-correcting algorithms

Shortest paths: Given a directed graph G = (V ,E ) with arc costs
c ∈ RE and a target node t, find a shortest path from every node to t.

• Can be formulated as a 2VPI system:

yu − yv ≤ cuv ∀uv ∈ E

yt = 0

• The pointwise maximal solution gives shortest path distances to t.

Label-correcting: Start with high values of y , and repeatedly correct
any violated contraints, i.e.

yu − yv > cuv =⇒ yu ← cuv + yv

• Can this method be extended to general 2VPI systems?

u v

(0, 0.5)

(0, 0.5)

yu ≤ 0.5yv

yv ≤ 0.5yu



Label-correcting algorithm for 2VPI

• Start with a subsystem for which the pointwise maximal solution y∗ is
trivial, and then progressively compute y∗ for larger subsystems.

Input: A 2VPI system (G , c , γ).

Output: y∗ if the system is feasible; INFEASIBLE otherwise.

1 Initialize node labels y ∈ Rn

2 k ← 0, G (0) ← (V , ∅)
3 for each u ∈ V :

G (k+1) ← G (k) ∪ δ+(u)
y∗ ← pointwise maximal solution to the subsystem (G (k+1), c , γ)

via accelerated Newton–Dinkelbach
if f does not have a root:
return INFEASIBLE

k ← k + 1

4 return y



Strongly polynomial analysis

Thm: For each subsystem (G (k), c , γ), the accelerated Newton’s method
terminates in O(m) iterations.

Proof idea:

• For each i ≥ 1, the Bregman divergence is the reduced cost of a path

Df (δ∗, δ(i)) = c∗(P(i))

• The Bregman divergence halves every two iterations

0 ≤ c∗(P(i)) ≤ 1

2
c∗(P(i−2))

• This sequence of paths satisfy a certain subpath monotonicity property.

• After every 2 iterations, an arc ceases to appear in future paths. �

⇒ Total running time O(m2n2).



Summary

• We accelerate the Newton–Dinkelbach method, and give an analysis
using Bregman divergence.

• Applications:

I A faster algorithm for linear fractional comb opt.

I An iterative O(m2n2) algorithm for 2VPI systems. This strengthens
a weakly polynomial result for Newton’s method on deterministic
Markov Decision Process [Madani ’02].

• Further questions:

I Can we make our algorithm competitive with Hochbaum–Naor’s
O(mn2 logm) algorithm? Is our analysis tight?

I Apply the accelerated Newton–Dinkelbach method to other
fractional optimization problems.

I Are there better acceleration schemes for the Newton–Dinkelbach
method?



Thank You!


