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Parity game

Setting: A directed graph G = (V, E) with partition V = VU V4, and
a function 7 : V — {1,2,...,d}.
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e Nodes in Vy and V; are owned by players and respectively.

e A token is placed on a starting node v € V. In every turn, the owner of
the current node moves the token to an out-neighbour.
= an infinite walk P (assume G is sinkless).

o If the highest priority occuring infinitely often in P is even, then Even
wins. Otherwise, Odd wins.



Parity game

Positional Determinacy: Starting from any node v € V/, either Even or
Odd can guarantee to win using a

o A (positional) for Even is a function o : Vo — V such that
vo(v) € E for all v € V. lts is Go = (V, E;) where

E,={vo(v):ve WU{weE: : veV}.

A strategy 7 for Odd and its strategy subgraph G, are defined similarly.

Problem: Given (G, 7) and starting node v € V, output the winner.
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Complexity of deciding the winner

e Belongs to NP N coNP.

e Important in logic and verification, e.g., polynomial-time equivalent to
the model-checking problem for modal p-calculus.

e Pre-2017 algorithms were exponential or subexponential time.

e Quasi-polynomial time [Calude, Jain, Khoussainov, Li, Stephan '17].
e Many other quasi-polynomial algorithms soon follow: [Fearnley, Jain,
Keijzer, Schewe, Stephan, Wojtczak '17] [Gimbert, Ibsen—Jensen '17] [Jurdzinski,
Lazi¢ '17] [Lehtinen '18] [Parys '19] [Lehtinen, Schewe, Wojtczak '19] [Daviaud,

Jurdzinski, Thejaswini '20] [Benerecetti, Dell’Erba, Mogavero, Schewe, Wojtczak '21].

e Most of them have been unified via the notion of a
[Czerwinski, Daviaud, Fijalkow, Jurdziriski, Lazi¢, Parys '19].



Ordered tree

?/ }K w M = {0,1,2}

0 012
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Def: Given a totally ordered set (M, <), an Tisa

prefix-closed set of tuples whose elements are drawn from M.

e Elements in M induce branching directions at every vertex v € V(T).
e The tuple corresponding to a vertex v is given by the root-v path.

e < extends lexicographically to V(T).

o L(T) := leaf set of T. Assume every leaf has the same depth.



Universal tree

e Given ordered trees T and T/, T T' (T C T') if there
exists an injective function f : V(T) — V/(T’) such that
@ u e E(T) = f(u)f(v) e E(T) (homomorphism)
O u<v = f(u)<f(v) (order-preserving)
Ty T T3 T
Def: An is an ordered tree T’ such that T C T’ for

all ordered trees T of height at most h and with at most / leaves.

Thm: Every universal tree has at least quasi-polynomially many leaves.
[Czerwiriski et al. '19].



Examples of universal trees

. (¢, h)-universal tree:
» Every leaf is an h-tuple of integers from {0,1,...,¢ —1}.
» Contains /" leaves.

. (¢, h)-universal tree [Jurdziniski, Lazi¢ '17]:
» Every leaf is an h-tuple of binary strings with at most |log¢] bits in
total.

> Contains £°8h+0(1) |eaves.
A O
012 012 012

bbb ddbb ddy

A perfect (3,2)-universal tree. A succinct (3,2)-universal tree.



Winning certificate from a universal tree

olet [(T):=L(T)U{T}, where T > v forall v e V(T).

e Given an instance (G, 7) with n=[V|, a is a function
w:V — L(T) for some (n,d/2)-universal tree T.

e For a leaf £ € L(T), we index its tuple by (§4—1,&4—3,---,&1)-
Intuition: records how many times an odd priority is encountered.

e For a priority p, the of £ is obtained by deleting the

components with index less than p.
AN “
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Winning certificate from a universal tree

Def: A node labeling 1 is if Even has a strategy o such
that every arc vw in G, satisfies

> If 7(v) is even, then pu(v)|r(vy > 1(W)|r ().
> If 7(v) is odd, then pu(v)|ry > p(w)|r(vy or p(v) = p(w) =T.

.
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Thm: Let p* be a node labeling which is feasible in G and has minimal
T-support. Even wins from v € V <= p*(v) # T [Jurdziriski '00].
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Thm: Let p* be a node labeling which is feasible in G and has minimal
T-support. Even wins from v € V <= p*(v) # T [Jurdziriski '00].



Value iteration

Def: Given pn: V — L[(T) and vw € E, let be the smallest
element £ € L(T) such that £ > p(v) and vw is non-violated after

setting p(v) to €.

Value-lteration(G,w, T)

@ u(v) < minL(T) forall veV
® while y is not feasible:
p(v) <= miny, g5+ lift(i, vw) for some node v € Vo whose

outgoing arcs 61 (v) are all violated or
w(v) < lift(p, vw) for some violated arc vw € E where v € V4

© return g

o Returns the in ©(n|L(T)|) iterations.

e Also called the [Jurdzifski '00].



Behaviour of value iteration

e Not robust against its worst-case runtime:

em [ 0T O

e If d is even, then the two additional nodes see every element in L(T).
= Q(|L(T)]) time.

Idea: Iterate over strategies instead of arcs:
> Fix a strategy 7 for Odd.
» Update pu to the least fixed point of G;.
> Pivot to a “better” strategy 7’ for Odd, and repeat.

Impossibility result: The label set L(T) is not fit for strategy iteration
[Ohlmann '22].



Strategy iteration

Strategy-lteration(G, 7, T, 7)

® u(v) < minL(T) forallveV
® 1 <+ least fixed point of G, which is at least u
® while p is not feasible in G:

Odd pivots to a strategy 7' by selecting violated arc(s)
T+ 7
1 < least fixed point of G, which is at least u

@ return p
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Computing the least fixed point of G,

e Value iteration on the G, still takes ©(|L(T)]|) time.

Idea: Approach the least fixed point from above.

» Inspired by label-correcting (e.g. Bellman—Ford) and label-setting
(e.g. Dijkstra) techniques from shortest path.

e We give an efficient method to compute the least fixed point of G, for
any universal tree T.

Running times for specific T

» O(d(m+ nlogn)) for a perfect (n, d/2)-universal tree.
» O(mn?log nlogd) for a succinct (n, d/2)-universal tree.

> O(mn?log® nlog d) for a Strahler (n, d/2)-universal tree (introduced
by [Daviaud, Jurdziriski, Thejaswini '20]).



Conclusion

e We now have a strategy iteration framework for parity games that
works with universal trees.

e Total running time is upper bounded by value iteration’s running time.

Open question: Is there a subquasi-polynomial pivot rule using some
universal tree?



