
Beyond Value Iteration for Parity Games:
Strategy Iteration with Universal Trees

Zhuan Khye Koh Georg Loho



Overview

1 Parity game

2 Complexity of deciding the winner

3 Winning certificate from a universal tree

4 Value iteration

5 Strategy iteration



Parity game

Setting: A directed graph G = (V ,E ) with partition V = V0 t V1, and
a priority function π : V → {1, 2, . . . , d}.

1

2 0 V1

13

4 0 V0

• Nodes in V0 and V1 are owned by players Even and Odd respectively.

• A token is placed on a starting node v ∈ V . In every turn, the owner of
the current node moves the token to an out-neighbour.
=⇒ an infinite walk P (assume G is sinkless).

• If the highest priority occuring infinitely often in P is even, then Even
wins. Otherwise, Odd wins.



Parity game

Positional Determinacy: Starting from any node v ∈ V , either Even or
Odd can guarantee to win using a positional strategy.

• A (positional) strategy for Even is a function σ : V0 → V such that
vσ(v) ∈ E for all v ∈ V0. Its strategy subgraph is Gσ = (V ,Eσ) where

Eσ = {vσ(v) : v ∈ V0} ∪ {vw ∈ E : v ∈ V1} .

A strategy τ for Odd and its strategy subgraph Gτ are defined similarly.

G

1

2 0 V1

13

4 0 V0

Problem: Given (G , π) and starting node v ∈ V , output the winner.



Parity game

Positional Determinacy: Starting from any node v ∈ V , either Even or
Odd can guarantee to win using a positional strategy.

• A (positional) strategy for Even is a function σ : V0 → V such that
vσ(v) ∈ E for all v ∈ V0. Its strategy subgraph is Gσ = (V ,Eσ) where

Eσ = {vσ(v) : v ∈ V0} ∪ {vw ∈ E : v ∈ V1} .

A strategy τ for Odd and its strategy subgraph Gτ are defined similarly.

Gσ

1

2 0 V1

13

4 0 V0

Problem: Given (G , π) and starting node v ∈ V , output the winner.



Parity game

Positional Determinacy: Starting from any node v ∈ V , either Even or
Odd can guarantee to win using a positional strategy.

• A (positional) strategy for Even is a function σ : V0 → V such that
vσ(v) ∈ E for all v ∈ V0. Its strategy subgraph is Gσ = (V ,Eσ) where

Eσ = {vσ(v) : v ∈ V0} ∪ {vw ∈ E : v ∈ V1} .

A strategy τ for Odd and its strategy subgraph Gτ are defined similarly.

Gτ

1

2 0 V1

13

4 0 V0

Problem: Given (G , π) and starting node v ∈ V , output the winner.



Complexity of deciding the winner

• Belongs to NP ∩ coNP.

• Important in logic and verification, e.g., polynomial-time equivalent to
the model-checking problem for modal µ-calculus.

• Pre-2017 algorithms were exponential or subexponential time.

• Quasi-polynomial time [Calude, Jain, Khoussainov, Li, Stephan ’17].

• Many other quasi-polynomial algorithms soon follow: [Fearnley, Jain,

Keijzer, Schewe, Stephan, Wojtczak ’17] [Gimbert, Ibsen–Jensen ’17] [Jurdziński,

Lazić ’17] [Lehtinen ’18] [Parys ’19] [Lehtinen, Schewe, Wojtczak ’19] [Daviaud,

Jurdziński, Thejaswini ’20] [Benerecetti, Dell’Erba, Mogavero, Schewe, Wojtczak ’21].

• Most of them have been unified via the notion of a universal tree
[Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys ’19].



Ordered tree

M = {0, 1, 2}
0 1 2

0 0 1 0 1 2

Def: Given a totally ordered set (M,≤), an ordered tree T is a
prefix-closed set of tuples whose elements are drawn from M.

• Elements in M induce branching directions at every vertex v ∈ V (T ).

• The tuple corresponding to a vertex v is given by the root-v path.

• ≤ extends lexicographically to V (T ).

• L(T ) := leaf set of T . Assume every leaf has the same depth.



Universal tree

• Given ordered trees T and T ′, T embeds into T ′ (T v T ′) if there
exists an injective function f : V (T )→ V (T ′) such that

1 uv ∈ E (T ) =⇒ f (u)f (v) ∈ E (T ′) (homomorphism)

2 u ≤ v =⇒ f (u) ≤ f (v) (order-preserving)

T1 T2 T3 T4

Def: An (`, h)-universal tree is an ordered tree T ′ such that T v T ′ for
all ordered trees T of height at most h and with at most ` leaves.

Thm: Every universal tree has at least quasi-polynomially many leaves.
[Czerwiński et al. ’19].



Examples of universal trees

• Perfect (`, h)-universal tree:

I Every leaf is an h-tuple of integers from {0, 1, . . . , `− 1}.
I Contains `h leaves.

• Succinct (`, h)-universal tree [Jurdziński, Lazić ’17]:

I Every leaf is an h-tuple of binary strings with at most blog `c bits in
total.

I Contains `log h+O(1) leaves.

0 1 2

0 1 2 0 1 2 0 1 2

A perfect (3,2)-universal tree. A succinct (3,2)-universal tree.



Winning certificate from a universal tree

• Let L(T ) := L(T ) ∪ {>}, where > > v for all v ∈ V (T ).

• Given an instance (G , π) with n = |V |, a node labeling is a function
µ : V → L(T ) for some (n, d/2)-universal tree T .

• For a leaf ξ ∈ L(T ), we index its tuple by (ξd−1, ξd−3, . . . , ξ1).

Intuition: records how many times an odd priority is encountered.

• For a priority p, the p-truncation of ξ is obtained by deleting the
components with index less than p.

ξ = (1, 0)

ξ|1 = (1, 0)

ξ|2 = (1)

ξ|3 = (1)

ξ|4 = ()

1

2

3

4

ξ

0 1 2

0 1 2 0 1 2 0 1 2



Winning certificate from a universal tree

Def: A node labeling µ is feasible in G if Even has a strategy σ such
that every arc vw in Gσ satisfies

I If π(v) is even, then µ(v)|π(v) ≥ µ(w)|π(v).

I If π(v) is odd, then µ(v)|π(v) > µ(w)|π(v) or µ(v) = µ(w) = >.

>

1

2(1, 0) 0 V1

1

>
3

(1, 0)

4

(0, 0)

0 V0

violated arcs

Thm: Let µ∗ be a node labeling which is feasible in G and has minimal
>-support. Even wins from v ∈ V ⇐⇒ µ∗(v) 6= > [Jurdziński ’00].



Winning certificate from a universal tree

Def: A node labeling µ is feasible in G if Even has a strategy σ such
that every arc vw in Gσ satisfies

I If π(v) is even, then µ(v)|π(v) ≥ µ(w)|π(v).

I If π(v) is odd, then µ(v)|π(v) > µ(w)|π(v) or µ(v) = µ(w) = >.

>

1

2(1, 0) 0 V1

1

>
3

(1, 0)

4

(0, 0)

0 V0

violated arcs

Thm: Let µ∗ be a node labeling which is feasible in G and has minimal
>-support. Even wins from v ∈ V ⇐⇒ µ∗(v) 6= > [Jurdziński ’00].



Value iteration

Def: Given µ : V → L(T ) and vw ∈ E , let lift(µ, vw) be the smallest
element ξ ∈ L(T ) such that ξ ≥ µ(v) and vw is non-violated after
setting µ(v) to ξ.

Value-Iteration(G , π,T )

1 µ(v)← min L(T ) for all v ∈ V

2 while µ is not feasible:

µ(v)← minvw∈δ+(v) lift(µ, vw) for some node v ∈ V0 whose
outgoing arcs δ+(v) are all violated or

µ(v)← lift(µ, vw) for some violated arc vw ∈ E where v ∈ V1

3 return µ

• Returns the least fixed point of G in Θ(n|L(T )|) iterations.

• Also called the progress measure algorithm [Jurdziński ’00].



Behaviour of value iteration

• Not robust against its worst-case runtime:

(G , π) 1 1d

• If d is even, then the two additional nodes see every element in L(T ).
=⇒ Ω(|L(T )|) time.

Idea: Iterate over strategies instead of arcs:

I Fix a strategy τ for Odd.

I Update µ to the least fixed point of Gτ .

I Pivot to a “better” strategy τ ′ for Odd, and repeat.

Impossibility result: The label set L(T ) is not fit for strategy iteration
[Ohlmann ’22].



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

1

2

13

4



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

(0, 0)

(0, 0)

1

2

1

(0, 0)

3

(0, 0)

4

(0, 0)



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

(0, 0)

(0, 0)

1

2

1

(0, 0)

3

(0, 0)

4

(0, 0)



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

(1, 0)

(0, 1)

1

2

1

(0, 2)

3

(1, 0)

4

(0, 0)



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

(1, 0)

(0, 1)

1

2

1

(0, 2)

3

(1, 0)

4

(0, 0)



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

(1, 0)

(0, 1)

1

2

1

(0, 2)

3

(1, 0)

4

(0, 0)



Strategy iteration

Strategy-Iteration(G , π,T , τ)

1 µ(v)← min L(T ) for all v ∈ V

2 µ← least fixed point of Gτ which is at least µ

3 while µ is not feasible in G :

Odd pivots to a strategy τ ′ by selecting violated arc(s)
τ ← τ ′

µ← least fixed point of Gτ which is at least µ

4 return µ

(1, 0)

>

1

2

1

>
3

(1, 0)

4

(0, 0)



Computing the least fixed point of Gτ

• Value iteration on the 1-player game Gτ still takes Θ(|L(T )|) time.

Idea: Approach the least fixed point from above.

I Inspired by label-correcting (e.g. Bellman–Ford) and label-setting
(e.g. Dijkstra) techniques from shortest path.

• We give an efficient method to compute the least fixed point of Gτ for
any universal tree T .

Running times for specific T

I O(d(m + n log n)) for a perfect (n, d/2)-universal tree.

I O(mn2 log n log d) for a succinct (n, d/2)-universal tree.

I O(mn2 log3 n log d) for a Strahler (n, d/2)-universal tree (introduced
by [Daviaud, Jurdziński, Thejaswini ’20]).



Conclusion

• We now have a strategy iteration framework for parity games that
works with universal trees.

• Total running time is upper bounded by value iteration’s running time.

Open question: Is there a subquasi-polynomial pivot rule using some
universal tree?


