Beyond Value Iteration for Parity Games: Strategy Iteration with Universal Trees

Zhuan Khye Koh Georg Loho

OF TWENTE.

Overview

(1) Parity game
(2) Complexity of deciding the winner
(3) Winning certificate from a universal tree
(4) Value iteration
(5) Strategy iteration

Parity game

Setting: A directed graph $G=(V, E)$ with partition $V=V_{0} \sqcup V_{1}$, and a priority function $\pi: V \rightarrow\{1,2, \ldots, d\}$.

$$
\begin{aligned}
& \square V_{0} \\
& \bigcirc V_{1}
\end{aligned}
$$

- Nodes in V_{0} and V_{1} are owned by players Even and Odd respectively.
- A token is placed on a starting node $v \in V$. In every turn, the owner of the current node moves the token to an out-neighbour.
\Longrightarrow an infinite walk P (assume G is sinkless).
- If the highest priority occuring infinitely often in P is even, then Even wins. Otherwise, Odd wins.

Parity game

Positional Determinacy: Starting from any node $v \in V$, either Even or Odd can guarantee to win using a positional strategy.

- A (positional) strategy for Even is a function $\sigma: V_{0} \rightarrow V$ such that $v \sigma(v) \in E$ for all $v \in V_{0}$. Its strategy subgraph is $G_{\sigma}=\left(V, E_{\sigma}\right)$ where

$$
E_{\sigma}=\left\{v \sigma(v): v \in V_{0}\right\} \cup\left\{v w \in E: v \in V_{1}\right\} .
$$

A strategy τ for Odd and its strategy subgraph G_{τ} are defined similarly.

Problem: Given (G, π) and starting node $v \in V$, output the winner.

Parity game

Positional Determinacy: Starting from any node $v \in V$, either Even or Odd can guarantee to win using a positional strategy.

- A (positional) strategy for Even is a function $\sigma: V_{0} \rightarrow V$ such that $v \sigma(v) \in E$ for all $v \in V_{0}$. Its strategy subgraph is $G_{\sigma}=\left(V, E_{\sigma}\right)$ where

$$
E_{\sigma}=\left\{v \sigma(v): v \in V_{0}\right\} \cup\left\{v w \in E: v \in V_{1}\right\} .
$$

A strategy τ for Odd and its strategy subgraph G_{τ} are defined similarly.

Problem: Given (G, π) and starting node $v \in V$, output the winner.

Parity game

Positional Determinacy: Starting from any node $v \in V$, either Even or Odd can guarantee to win using a positional strategy.

- A (positional) strategy for Even is a function $\sigma: V_{0} \rightarrow V$ such that $v \sigma(v) \in E$ for all $v \in V_{0}$. Its strategy subgraph is $G_{\sigma}=\left(V, E_{\sigma}\right)$ where

$$
E_{\sigma}=\left\{v \sigma(v): v \in V_{0}\right\} \cup\left\{v w \in E: v \in V_{1}\right\} .
$$

A strategy τ for Odd and its strategy subgraph G_{τ} are defined similarly.

Problem: Given (G, π) and starting node $v \in V$, output the winner.

Complexity of deciding the winner

- Belongs to NP \cap coNP.
- Important in logic and verification, e.g., polynomial-time equivalent to the model-checking problem for modal μ-calculus.
- Pre-2017 algorithms were exponential or subexponential time.
- Quasi-polynomial time [Calude, Jain, Khoussainov, Li, Stephan '17].
- Many other quasi-polynomial algorithms soon follow: [Fearnley, Jain, Keijzer, Schewe, Stephan, Wojtczak '17] [Gimbert, Ibsen-Jensen '17] [Jurdziński, Lazić '17] [Lehtinen '18] [Parys '19] [Lehtinen, Schewe, Wojtczak '19] [Daviaud, Jurdziński, Thejaswini '20] [Benerecetti, Dell'Erba, Mogavero, Schewe, Wojtczak '21].
- Most of them have been unified via the notion of a universal tree [Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys '19].

Ordered tree

$$
M=\{0,1,2\}
$$

Def: Given a totally ordered set (M, \leq), an ordered tree T is a prefix-closed set of tuples whose elements are drawn from M.

- Elements in M induce branching directions at every vertex $v \in V(T)$.
- The tuple corresponding to a vertex v is given by the root- v path.
- \leq extends lexicographically to $V(T)$.
- $L(T):=$ leaf set of T. Assume every leaf has the same depth.

Universal tree

- Given ordered trees T and T^{\prime}, T embeds into $T^{\prime}\left(T \sqsubseteq T^{\prime}\right)$ if there exists an injective function $f: V(T) \rightarrow V\left(T^{\prime}\right)$ such that
(1) $u v \in E(T) \Longrightarrow f(u) f(v) \in E\left(T^{\prime}\right)$ (homomorphism)
(2) $u \leq v \Longrightarrow f(u) \leq f(v)$

T_{1}

T_{2}

T_{3}

T_{4}

Def: An (ℓ, h)-universal tree is an ordered tree T^{\prime} such that $T \sqsubseteq T^{\prime}$ for all ordered trees T of height at most h and with at most ℓ leaves.

Thm: Every universal tree has at least quasi-polynomially many leaves. [Czerwiński et al. '19].

Examples of universal trees

- Perfect (ℓ, h)-universal tree:
- Every leaf is an h-tuple of integers from $\{0,1, \ldots, \ell-1\}$.
- Contains ℓ^{h} leaves.
- Succinct (ℓ, h)-universal tree [Jurdziński, Lazić '17]:
- Every leaf is an h-tuple of binary strings with at most $\lfloor\log \ell\rfloor$ bits in total.
- Contains $\ell^{\log h+O(1)}$ leaves.

A perfect (3,2)-universal tree.

Winning certificate from a universal tree

- Let $\bar{L}(T):=L(T) \cup\{T\}$, where $T>v$ for all $v \in V(T)$.
- Given an instance (G, π) with $n=|V|$, a node labeling is a function $\mu: V \rightarrow \bar{L}(T)$ for some ($n, d / 2$)-universal tree T.
- For a leaf $\xi \in L(T)$, we index its tuple by $\left(\xi_{d-1}, \xi_{d-3}, \ldots, \xi_{1}\right)$.

Intuition: records how many times an odd priority is encountered.

- For a priority p, the p-truncation of ξ is obtained by deleting the components with index less than p.

$$
\begin{aligned}
\xi & =(1,0) \\
\left.\xi\right|_{1} & =(1,0) \\
\left.\xi\right|_{2} & =(1) \\
\left.\xi\right|_{3} & =(1) \\
\left.\xi\right|_{4} & =()
\end{aligned}
$$

Winning certificate from a universal tree

Def: A node labeling μ is feasible in G if Even has a strategy σ such that every arc $v w$ in G_{σ} satisfies

- If $\pi(v)$ is even, then $\left.\mu(v)\right|_{\pi(v)} \geq\left.\mu(w)\right|_{\pi(v)}$.
- If $\pi(v)$ is odd, then $\left.\mu(v)\right|_{\pi(v)}>\left.\mu(w)\right|_{\pi(v)}$ or $\mu(v)=\mu(w)=T$.

Thm: Let μ^{*} be a node labeling which is feasible in G and has minimal T-support. Even wins from $v \in V \Longleftrightarrow \mu^{*}(v) \neq \top$ [Jurdziński '00].

Winning certificate from a universal tree

Def: A node labeling μ is feasible in G if Even has a strategy σ such that every arc $v w$ in G_{σ} satisfies

- If $\pi(v)$ is even, then $\left.\mu(v)\right|_{\pi(v)} \geq\left.\mu(w)\right|_{\pi(v)}$.
- If $\pi(v)$ is odd, then $\left.\mu(v)\right|_{\pi(v)}>\left.\mu(w)\right|_{\pi(v)}$ or $\mu(v)=\mu(w)=T$.

Thm: Let μ^{*} be a node labeling which is feasible in G and has minimal T-support. Even wins from $v \in V \Longleftrightarrow \mu^{*}(v) \neq \top$ [Jurdziński '00].

Value iteration

Def: Given $\mu: V \rightarrow \bar{L}(T)$ and $v w \in E$, let lift $(\mu, v w)$ be the smallest element $\xi \in \bar{L}(T)$ such that $\xi \geq \mu(v)$ and $v w$ is non-violated after setting $\mu(v)$ to ξ.

Value-Iteration (G, π, T)
(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) while μ is not feasible:
$\mu(v) \leftarrow \min _{v w \in \delta^{+}(v)} \operatorname{lift}(\mu, v w)$ for some node $v \in V_{0}$ whose outgoing arcs $\delta^{+}(v)$ are all violated or $\mu(v) \leftarrow \operatorname{lift}(\mu, v w)$ for some violated arc $v w \in E$ where $v \in V_{1}$
(3) return μ

- Returns the least fixed point of G in $\Theta(n|L(T)|)$ iterations.
- Also called the progress measure algorithm [Jurdziński '00].

Behaviour of value iteration

- Not robust against its worst-case runtime:

$$
(G, \pi)
$$

- If d is even, then the two additional nodes see every element in $\bar{L}(T)$. $\Longrightarrow \Omega(|L(T)|)$ time.

Idea: Iterate over strategies instead of arcs:

- Fix a strategy τ for Odd.
- Update μ to the least fixed point of G_{τ}.
- Pivot to a "better" strategy τ^{\prime} for Odd, and repeat.

Impossibility result: The label set $\bar{L}(T)$ is not fit for strategy iteration [Ohlmann '22].

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(3) while μ is not feasible in G :

Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(3) while μ is not feasible in G :

Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(3) while μ is not feasible in G :

Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(3) while μ is not feasible in G :

Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(3) while μ is not feasible in G :

Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ

3 while μ is not feasible in G :
Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Strategy iteration

Strategy-Iteration (G, π, T, τ)

(1) $\mu(v) \leftarrow \min L(T)$ for all $v \in V$
(2) $\mu \leftarrow$ least fixed point of G_{τ} which is at least μ

3 while μ is not feasible in G :
Odd pivots to a strategy τ^{\prime} by selecting violated $\operatorname{arc}(\mathrm{s})$ $\tau \leftarrow \tau^{\prime}$
$\mu \leftarrow$ least fixed point of G_{τ} which is at least μ
(4) return μ

Computing the least fixed point of G_{τ}

- Value iteration on the 1-player game G_{τ} still takes $\Theta(|L(T)|)$ time.

Idea: Approach the least fixed point from above.

- Inspired by label-correcting (e.g. Bellman-Ford) and label-setting (e.g. Dijkstra) techniques from shortest path.
- We give an efficient method to compute the least fixed point of G_{τ} for any universal tree T.

Running times for specific T

- $O(d(m+n \log n))$ for a perfect $(n, d / 2)$-universal tree.
- $O\left(m n^{2} \log n \log d\right)$ for a succinct $(n, d / 2)$-universal tree.
- $O\left(m n^{2} \log ^{3} n \log d\right)$ for a Strahler $(n, d / 2)$-universal tree (introduced by [Daviaud, Jurdziński, Thejaswini '20]).

Conclusion

- We now have a strategy iteration framework for parity games that works with universal trees.
- Total running time is upper bounded by value iteration's running time.

Open question: Is there a subquasi-polynomial pivot rule using some universal tree?

