
Stabilizing Weighted Graphs

Zhuan Khye Koh Laura Sanità

Combinatorics and Optimization
University of Waterloo, Canada

July 3, 2018

Matchings and w-vertex covers

• Let G = (V ,E) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G) ≤ νf (G) = τf (G).

Matchings and w-vertex covers

• Let G = (V ,E) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G) ≤ νf (G) = τf (G).

Matchings and w-vertex covers

• Let G = (V ,E) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G) ≤ νf (G) = τf (G).

Matchings and w-vertex covers

• Let G = (V ,E) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G) ≤ νf (G) = τf (G).

Matchings and w-vertex covers

• Let G = (V ,E) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G) ≤ νf (G) = τf (G).

Matchings and w-vertex covers

• Let G = (V ,E) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G) ≤ νf (G) = τf (G).

Stable graphs

• There are graphs where ν(G) < νf (G).

1 1

1

ν(G) = 1

1 1

1

νf (G) = 1.5

xe = 1

xe = 1
2

Def. A graph G is stable if ν(G) = νf (G).

1 1

1

1

0.5

0.5 0.5

0.5

Stable graphs

• There are graphs where ν(G) < νf (G).

1 1

1

ν(G) = 1

1 1

1

νf (G) = 1.5

xe = 1

xe = 1
2

Def. A graph G is stable if ν(G) = νf (G).

1 1

1

1

0.5

0.5 0.5

0.5

Stable graphs

• There are graphs where ν(G) < νf (G).

1 1

1

ν(G) = 1

1 1

1

νf (G) = 1.5

xe = 1

xe = 1
2

Def. A graph G is stable if ν(G) = νf (G).

1 1

1

1

0.5

0.5 0.5

0.5

Stable graphs

• There are graphs where ν(G) < νf (G).

1 1

1

ν(G) = 1

1 1

1

νf (G) = 1.5

xe = 1

xe = 1
2

Def. A graph G is stable if ν(G) = νf (G).

1 1

1

1

0.5

0.5 0.5

0.5

Stable graphs

• There are graphs where ν(G) < νf (G).

1 1

1

ν(G) = 1

1 1

1

νf (G) = 1.5

xe = 1

xe = 1
2

Def. A graph G is stable if ν(G) = νf (G).

1 1

1

1

0.5

0.5 0.5

0.5

Stable graphs

• There are graphs where ν(G) < νf (G).

1 1

1

ν(G) = 1

1 1

1

νf (G) = 1.5

xe = 1

xe = 1
2

Def. A graph G is stable if ν(G) = νf (G).

1 1

1

1

0.5

0.5 0.5

0.5

Stabilizers

Def. An edge-stabilizer is a subset F ⊂ E such that G \ F is stable.

4

4

1

3

4
2

2

→×
4

4

1

3

2

2

Def. A vertex-stabilizer is a subset S ⊆ V such that G \ S is stable.

4

4

1

3

4
2

2

→

×
4

1

3

2

2

Stabilizers

Def. An edge-stabilizer is a subset F ⊂ E such that G \ F is stable.

4

4

1

3

4
2

2

→×
4

4

1

3

2

2

Def. A vertex-stabilizer is a subset S ⊆ V such that G \ S is stable.

4

4

1

3

4
2

2

→

×
4

1

3

2

2

Stabilizers

Def. An edge-stabilizer is a subset F ⊂ E such that G \ F is stable.

4

4

1

3

4
2

2

→×
4

4

1

3

2

2

Def. A vertex-stabilizer is a subset S ⊆ V such that G \ S is stable.

4

4

1

3

4
2

2

→

×
4

1

3

2

2

Stabilizers

Def. An edge-stabilizer is a subset F ⊂ E such that G \ F is stable.

4

4

1

3

4
2

2

→×
4

4

1

3

2

2

Def. A vertex-stabilizer is a subset S ⊆ V such that G \ S is stable.

4

4

1

3

4
2

2

→

×
4

1

3

2

2

Stabilizers

Def. An edge-stabilizer is a subset F ⊂ E such that G \ F is stable.

4

4

1

3

4
2

2

→×
4

4

1

3

2

2

Def. A vertex-stabilizer is a subset S ⊆ V such that G \ S is stable.

4

4

1

3

4
2

2

→

×
4

1

3

2

2

Finding small stabilizers

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

I Motivated by network bargaining games and cooperative matching
games.

Finding small stabilizers

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

I Motivated by network bargaining games and cooperative matching
games.

Finding small stabilizers

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

I Motivated by network bargaining games and cooperative matching
games.

Finding small stabilizers

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

I Motivated by network bargaining games and cooperative matching
games.

Finding small stabilizers

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

I Motivated by network bargaining games and cooperative matching
games.

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).

• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .

• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E)

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E) be an edge-weighted graph.

Goal: Allocate the value ν(G) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].

Unweighted vs. weighted graphs

• On unweighted graphs,

I For any minimum edge-stabilizer F , ν(G \ F) = ν(G).

I For any minimum vertex-stabilizer S , ν(G \ S) = ν(G).

• This property does not hold on weighted graphs.

4

4

1

4

ν(G) = 5

4

4

1

4

νf (G) = 6

Unweighted vs. weighted graphs

• On unweighted graphs,

I For any minimum edge-stabilizer F , ν(G \ F) = ν(G).

I For any minimum vertex-stabilizer S , ν(G \ S) = ν(G).

• This property does not hold on weighted graphs.

4

4

1

4

ν(G) = 5

4

4

1

4

νf (G) = 6

Unweighted vs. weighted graphs

• On unweighted graphs,

I For any minimum edge-stabilizer F , ν(G \ F) = ν(G).

I For any minimum vertex-stabilizer S , ν(G \ S) = ν(G).

• This property does not hold on weighted graphs.

4

4

1

4

ν(G) = 5

4

4

1

4

νf (G) = 6

Unweighted vs. weighted graphs

• On unweighted graphs,

I For any minimum edge-stabilizer F , ν(G \ F) = ν(G).

I For any minimum vertex-stabilizer S , ν(G \ S) = ν(G).

• This property does not hold on weighted graphs.

4

4

1

4

ν(G) = 5

4

4

1

4

νf (G) = 6

Main results

Thm 1: There exists a polynomial time algorithm that computes a
minimum vertex-stabilizer S for a weighted graph G . Moreover,

ν(G \ S) ≥ 2

3
ν(G).

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where
ν(G \ S) = ν(G) is NP-complete.

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Thm 4: There exists an efficient O(∆)-approximation algorithm for the
minimum edge-stabilizer problem.

Main results

Thm 1: There exists a polynomial time algorithm that computes a
minimum vertex-stabilizer S for a weighted graph G . Moreover,

ν(G \ S) ≥ 2

3
ν(G).

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where
ν(G \ S) = ν(G) is NP-complete.

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Thm 4: There exists an efficient O(∆)-approximation algorithm for the
minimum edge-stabilizer problem.

Main results

Thm 1: There exists a polynomial time algorithm that computes a
minimum vertex-stabilizer S for a weighted graph G . Moreover,

ν(G \ S) ≥ 2

3
ν(G).

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where
ν(G \ S) = ν(G) is NP-complete.

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Thm 4: There exists an efficient O(∆)-approximation algorithm for the
minimum edge-stabilizer problem.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci

yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G).

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G).

Proof: Stability - due to complementary slackness.

1
3

2

4

5

7

3

5

6
1

2

2

4
3

6

1
9

7

4

5
6

4

3

2

5

Optimality - γ(G) is a lower bound on the size of a
vertex-stabilizer.

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G)− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G)
odd cycles.

v

v

Easy case: v lies in a cycle of C (x̂).

Hard case: v does not lie in a cycle of C (x̂).

Can we do better?

• Can we preserve more than 2
3ν(G)? No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Can we do better?

• Can we preserve more than 2
3ν(G)?

No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Can we do better?

• Can we preserve more than 2
3ν(G)? No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Can we do better?

• Can we preserve more than 2
3ν(G)? No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Can we do better?

• Can we preserve more than 2
3ν(G)? No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Can we do better?

• Can we preserve more than 2
3ν(G)? No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Can we do better?

• Can we preserve more than 2
3ν(G)? No!

2

2

1− ε

2

For any subset S ⊆ V ,

ν(G \ S) ≤ 2 =
2

3− ε
ν(G)

• Can we decide if G has a weight-preserving vertex-stabilizer S , i.e.

ν(G \ S) = ν(G)?

NP-complete!

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1 0.5 1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1 0.5 1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1 0.5 1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1

0.5

1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1

0.5

1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1

0.5

1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1

0.5

1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Computing edge-stabilizers

• In constrast to vertex-stabilizers, γ(G) is not a lower bound.

2

2

2

1

0.5

1

2

2

2

Lemma: For any edge e, γ(G \ e) ≥ γ(G)− 2.

Lower Bound: Every edge-stabilizer has size at least
⌈
γ(G)
2

⌉
.

Thm 4: There exists an O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

Additional results

• Given a set of deals M, remove as few players as possible such that M
is realizable as a stable outcome.

→ Find a minimum vertex-stabilizer S such that
M is a maximum-weight matching in G \ S .

• A solution to this problem is called an M-vertex-stabilizer.

Thm [Ahmadian et al. ’16]: If M is a maximum matching in an
unweighted graph, then it is polytime solvable.

Thm 6: The problem is NP-hard on unweighted graphs. Moreover, no
(2− ε)-approximation algorithm exists for any ε > 0 assuming UGC.

Thm 7: The problem admits a 2-approximation algorithm on weighted
graphs. Furthermore, if M is a maximum-weight matching, then it is
polytime solvable.

Thank you!

Appendix 1

Thm 2: Deciding whether a graph has a weight-preserving
vertex-stabilizer is NP-complete.

Proof: Reduction from the independent set problem.

Construct the gadget graph G∗ as follows:

v1 v2
. . .

vk
. . .

vn

v ′
1 v ′

2 v ′
k v ′

n

b1 b2 bk

. . .

G

we = 4

we = 2

we = 1

G has an independent set of size k
⇔

G∗ has a weight-preserving vertex-stabilizer. �

Appendix 2

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Proof: Suppose we have an α-approximation algorithm. Set ρ = dαe.

v1 v2
. . .

vk
. . .

. . .

vn

v ′
1 v ′

2 v ′
k v ′

n

b1 b2 bk

K2ρk+1 K2ρk+1 K2ρk+1

G

... ρk copies
we = 4

we = 2

we = 1

• If G has an independent set of size k , then OPT ≤ k.
• Else, OPT ≥ (ρ+ 1)k. �

