Stabilizing Weighted Graphs

Zhuan Khye Koh Laura Sanità

Combinatorics and Optimization
University of Waterloo, Canada

July 3, 2018

Matchings and w-vertex covers

Matchings and w-vertex covers

- Let $G=(V, E)$ be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Matchings and w-vertex covers

- Let $G=(V, E)$ be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$
\nu_{f}(G):=\max \left\{w^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} .
$$

Matchings and w-vertex covers

- Let $G=(V, E)$ be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$
\nu_{f}(G):=\max \left\{w^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} .
$$

Def. A vector $y \in \mathbb{R}^{V}$ is a fractional w-vertex cover if it is a feasible solution to

$$
\tau_{f}(G):=\min \left\{\mathbb{1}^{\top} y: y_{u}+y_{v} \geq w_{u v} \forall u v \in E, y \geq 0\right\}
$$

Matchings and w-vertex covers

- Let $G=(V, E)$ be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$
\nu_{f}(G):=\max \left\{w^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} .
$$

Def. A vector $y \in \mathbb{R}^{V}$ is a fractional w-vertex cover if it is a feasible solution to

$$
\tau_{f}(G):=\min \left\{\mathbb{1}^{\top} y: y_{u}+y_{v} \geq w_{u v} \forall u v \in E, y \geq 0\right\}
$$

- Denote $\nu(G)$ as the value of a maximum-weight matching in G.

Matchings and w-vertex covers

- Let $G=(V, E)$ be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$
\nu_{f}(G):=\max \left\{w^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} .
$$

Def. A vector $y \in \mathbb{R}^{V}$ is a fractional w-vertex cover if it is a feasible solution to

$$
\tau_{f}(G):=\min \left\{\mathbb{1}^{\top} y: y_{u}+y_{v} \geq w_{u v} \forall u v \in E, y \geq 0\right\}
$$

- Denote $\nu(G)$ as the value of a maximum-weight matching in G.
- By LP duality,

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G)
$$

Stable graphs

Stable graphs

- There are graphs where $\nu(G)<\nu_{f}(G)$.

Stable graphs

- There are graphs where $\nu(G)<\nu_{f}(G)$.

$$
\nu(G)=1
$$

$\nu_{f}(G)=1.5$

$$
x_{e}=1
$$

$x_{e}=1$
$x_{e}=\frac{1}{2}$

$$
x_{e}=\frac{1}{2}
$$

Stable graphs

- There are graphs where $\nu(G)<\nu_{f}(G)$.

$$
\nu(G)=1
$$

$$
\nu_{f}(G)=1.5
$$

$$
x_{e}=1
$$

$$
x_{e}=\frac{1}{2}
$$

Def. A graph G is stable if $\nu(G)=\nu_{f}(G)$.

Stable graphs

- There are graphs where $\nu(G)<\nu_{f}(G)$.

$$
\nu(G)=1
$$

$$
\nu_{f}(G)=1.5
$$

$\square \begin{aligned} & x_{e}=1 \\ & x_{e}=\frac{1}{2}\end{aligned}$

Def. A graph G is stable if $\nu(G)=\nu_{f}(G)$.

Stable graphs

- There are graphs where $\nu(G)<\nu_{f}(G)$.

$$
\nu(G)=1
$$

$\nu_{f}(G)=1.5$
$x_{e}=1$
$x_{e}=\frac{1}{2}$

Def. A graph G is stable if $\nu(G)=\nu_{f}(G)$.

Stabilizers

Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \backslash F$ is stable.

Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \backslash F$ is stable.

Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \backslash F$ is stable.

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \backslash S$ is stable.

Stabilizers

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \backslash F$ is stable.

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \backslash S$ is stable.

Finding small stabilizers

Finding small stabilizers

- This gives rise to the following two optimization problems:

Finding small stabilizers

- This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer

Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer

Find an edge-stabilizer of minimum cardinality.

Finding small stabilizers

- This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer

Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer

Find an edge-stabilizer of minimum cardinality.

- Why are stable graphs interesting?

Finding small stabilizers

- This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer

Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer

Find an edge-stabilizer of minimum cardinality.

- Why are stable graphs interesting?
- Motivated by network bargaining games and cooperative matching games.

Network bargaining games

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.
- Every player can make a deal with at most 1 neighbour.

$$
\rightarrow \text { matching } M
$$

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.
- Every player can make a deal with at most 1 neighbour.

$$
\rightarrow \text { matching } M
$$

- When a deal is made, players split the value.

$$
\begin{aligned}
& \rightarrow \text { allocation } y \in \mathbb{R}_{\geq 0}^{V} \text { : } \\
& y_{u}+y_{v}=w_{u v} \forall u v \in M \\
& y_{u}=0 \text { if } u \text { is } M \text {-exposed. }
\end{aligned}
$$

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.
- Every player can make a deal with at most 1 neighbour.

$$
\rightarrow \text { matching } M
$$

- When a deal is made, players split the value.

$$
\begin{gathered}
\rightarrow \text { allocation } y \in \mathbb{R}_{\geq 0}^{V}: \\
y_{u}+y_{v}=w_{u v} \forall u v \in M \\
y_{u}=0 \text { if } u \text { is } M \text {-exposed. }
\end{gathered}
$$

- An outcome is given by (M, y).

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.
- Every player can make a deal with at most 1 neighbour.

$$
\rightarrow \text { matching } M
$$

- When a deal is made, players split the value.

$$
\begin{gathered}
\rightarrow \text { allocation } y \in \mathbb{R}_{\geq 0}^{v} \text { : } \\
y_{u}+y_{v}=w_{u v} \forall u v \in M \\
y_{u}=0 \text { if } u \text { is } M \text {-exposed. }
\end{gathered}
$$

- An outcome is given by (M, y).
- An outcome is stable if $y_{u}+y_{v} \geq w_{u v}$ for all $u v \in E$.

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.
- Every player can make a deal with at most 1 neighbour.

$$
\rightarrow \text { matching } M
$$

- When a deal is made, players split the value.

$$
\begin{aligned}
& \rightarrow \text { allocation } y \in \mathbb{R}_{\geq 0}^{V} \text { : } \\
& y_{u}+y_{v}=w_{u v} \forall u v \in M \\
& y_{u}=0 \text { if } u \text { is } M \text {-exposed. }
\end{aligned}
$$

- An outcome is given by (M, y).
- An outcome is stable if $y_{u}+y_{v} \geq w_{u v}$ for all $u v \in E$.
- A stable outcome is balanced if the deal values are "fairly" split.

Network bargaining games

- [Kleinberg and Tardos '08] Given an edge-weighted graph $G=(V, E)$
- Every vertex represents a player.
- Every edge e represents a deal of value w_{e}.
- Every player can make a deal with at most 1 neighbour.

$$
\rightarrow \text { matching } M
$$

- When a deal is made, players split the value.

$$
\begin{aligned}
& \rightarrow \text { allocation } y \in \mathbb{R}_{\geq 0}^{V} \text { : } \\
& y_{u}+y_{v}=w_{u v} \forall u v \in M \\
& y_{u}=0 \text { if } u \text { is } M \text {-exposed. }
\end{aligned}
$$

- An outcome is given by (M, y).
- An outcome is stable if $y_{u}+y_{v} \geq w_{u v}$ for all $u v \in E$.
- A stable outcome is balanced if the deal values are "fairly" split.

A stable outcome exists \Leftrightarrow A balanced outcome exists $\Leftrightarrow G$ is stable

Cooperative matching games

Cooperative matching games

- [Shapley and Shubik '71] Let $G=(V, E)$ be an edge-weighted graph.

Cooperative matching games

- [Shapley and Shubik '71] Let $G=(V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$
\sum_{v \in S} y_{v} \geq \nu(G[S]) \quad \forall S \subseteq V
$$

Cooperative matching games

- [Shapley and Shubik '71] Let $G=(V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$
\sum_{v \in S} y_{v} \geq \nu(G[S]) \quad \forall S \subseteq V
$$

- Such an allocation y is called stable.

Cooperative matching games

- [Shapley and Shubik '71] Let $G=(V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$
\sum_{v \in S} y_{v} \geq \nu(G[S]) \forall S \subseteq V
$$

- Such an allocation y is called stable.
- [Deng et al. '99] proved that a stable allocation exists $\Leftrightarrow G$ is stable

Cooperative matching games

- [Shapley and Shubik '71] Let $G=(V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$
\sum_{v \in S} y_{v} \geq \nu(G[S]) \forall S \subseteq V
$$

- Such an allocation y is called stable.
- [Deng et al. '99] proved that a stable allocation exists $\Leftrightarrow G$ is stable

Can we stabilize unstable games through minimal changes in the underlying network?

Cooperative matching games

- [Shapley and Shubik '71] Let $G=(V, E)$ be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

- No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$
\sum_{v \in S} y_{v} \geq \nu(G[S]) \quad \forall S \subseteq V
$$

- Such an allocation y is called stable.
- [Deng et al. '99] proved that a stable allocation exists $\Leftrightarrow G$ is stable

Can we stabilize unstable games through minimal changes in the underlying network?

e.g. by blocking some players	Vertex-stabilizer
$\left.\begin{array}{ll}\text { by blocking some deals } & \text { Edge-stabilizer } \\ & \end{array}\right)$	

State of the art

State of the art

Unweighted Graphs

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2-\varepsilon)$ for any $\varepsilon>0$ assuming UGC.

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2-\varepsilon)$ for any $\varepsilon>0$ assuming UGC.
- They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2-\varepsilon)$ for any $\varepsilon>0$ assuming UGC.
- They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.
- [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2-\varepsilon)$ for any $\varepsilon>0$ assuming UGC.
- They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.
- [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.
- Stabilizing a graph via different operations:
- [lto et al. '16] Adding vertices/edges.
- [Chandrasekaran et al. '16] Fractionally increasing edge weights.

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2-\varepsilon)$ for any $\varepsilon>0$ assuming UGC.
- They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.
- [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.
- Stabilizing a graph via different operations:
- [lto et al. '16] Adding vertices/edges.
- [Chandrasekaran et al. '16] Fractionally increasing edge weights.
- [Ahmadian et al '16] Vertex-stabilizer with costs.

State of the art

Unweighted Graphs

- [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2-\varepsilon)$ for any $\varepsilon>0$ assuming UGC.
- They gave an $O(\omega)$-approximation algorithm, where ω is the sparsity of the graph.
- [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer is polynomial time solvable.
- Stabilizing a graph via different operations:
- [lto et al. '16] Adding vertices/edges.
- [Chandrasekaran et al. '16] Fractionally increasing edge weights.
- [Ahmadian et al '16] Vertex-stabilizer with costs.
- Other variants [Mishra et al. '11, Biró et al. '12, Könemann et al. '15].

Unweighted vs. weighted graphs

Unweighted vs. weighted graphs

- On unweighted graphs,
- For any minimum edge-stabilizer $F, \nu(G \backslash F)=\nu(G)$.
- For any minimum vertex-stabilizer $S, \nu(G \backslash S)=\nu(G)$.

Unweighted vs. weighted graphs

- On unweighted graphs,
- For any minimum edge-stabilizer $F, \nu(G \backslash F)=\nu(G)$.
- For any minimum vertex-stabilizer $S, \nu(G \backslash S)=\nu(G)$.
- This property does not hold on weighted graphs.

Unweighted vs. weighted graphs

- On unweighted graphs,
- For any minimum edge-stabilizer $F, \nu(G \backslash F)=\nu(G)$.
- For any minimum vertex-stabilizer $S, \nu(G \backslash S)=\nu(G)$.
- This property does not hold on weighted graphs.

$\nu(G)=5$

$\nu_{f}(G)=6$

Main results

Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover,

$$
\nu(G \backslash S) \geq \frac{2}{3} \nu(G)
$$

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where $\nu(G \backslash S)=\nu(G)$ is NP-complete.

Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover,

$$
\nu(G \backslash S) \geq \frac{2}{3} \nu(G)
$$

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where $\nu(G \backslash S)=\nu(G)$ is NP-complete.

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless $\mathbf{P}=\mathbf{N P}$.

Thm 4: There exists an efficient $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.

Preliminaries

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$
- $M(\hat{x}):=\left\{e \in E: \hat{x}_{e}=1\right\}$.

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$
- $M(\hat{x}):=\left\{e \in E: \hat{x}_{e}=1\right\}$.

Def.

$$
\gamma(G):=\min _{\hat{x} \in \mathcal{X}}|\mathscr{C}(\hat{x})|
$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$
- $M(\hat{x}):=\left\{e \in E: \hat{x}_{e}=1\right\}$.

Def.

$$
\gamma(G):=\min _{\hat{x} \in \mathcal{X}}|\mathscr{C}(\hat{x})|
$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

- G is stable if and only if $\gamma(G)=0$.

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$
- $M(\hat{x}):=\left\{e \in E: \hat{x}_{e}=1\right\}$.

Def.

$$
\gamma(G):=\min _{\hat{x} \in \mathcal{X}}|\mathscr{C}(\hat{x})|
$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

- G is stable if and only if $\gamma(G)=0$.
- Let y be a minimum fractional w-vertex cover in G.

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$
- $M(\hat{x}):=\left\{e \in E: \hat{x}_{e}=1\right\}$.

Def.

$$
\gamma(G):=\min _{\hat{x} \in \mathcal{X}}|\mathscr{C}(\hat{x})|
$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

- G is stable if and only if $\gamma(G)=0$.
- Let y be a minimum fractional w-vertex cover in G.
- An edge $u v$ is tight if $y_{u}+y_{v}=w_{u v}$.

Preliminaries

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if
(1) $\hat{x}_{e} \in\left\{0, \frac{1}{2}, 1\right\}$ for every edge e; and
(2) The edges e with $\hat{x}_{e}=\frac{1}{2}$ induce vertex-disjoint odd cycles in G.

- Given a basic fractional matching \hat{x} in G, denote
- $\mathscr{C}(\hat{x}):=\left\{C_{1}, \ldots, C_{q}\right\}$ as the set of odd cycles induced by $\hat{x}_{e}=\frac{1}{2}$
- $M(\hat{x}):=\left\{e \in E: \hat{x}_{e}=1\right\}$.

Def.

$$
\gamma(G):=\min _{\hat{x} \in \mathcal{X}}|\mathscr{C}(\hat{x})|
$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

- G is stable if and only if $\gamma(G)=0$.
- Let y be a minimum fractional w-vertex cover in G.
- An edge $u v$ is tight if $y_{u}+y_{v}=w_{u v}$.
- A path is tight if all its edges are tight.

Preliminaries

Preliminaries

- We will use the following 2 operations:

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

(2) By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

(2) By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

(2) By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

Preliminaries

- We will use the following 2 operations:
(1) By complementing on $F \subseteq E$, we mean replacing \hat{x}_{e} by $\bar{x}_{e}=1-\hat{x}_{e}$ for all $e \in F$.

(2) By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

Def. An alternating path is valid if it

- starts with an exposed vertex or a matched edge
- ends with an exposed vertex or a matched edge

Computing vertex-stabilizers

Computing vertex-stabilizers

The algorithm:

Computing vertex-stabilizers

The algorithm:
(1) Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.

Computing vertex-stabilizers

The algorithm:
(1) Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.

Computing vertex-stabilizers

The algorithm:
(1) Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
(2) Compute a minimum fractional w-vertex cover y in G.

Computing vertex-stabilizers

The algorithm:
(1) Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
(2) Compute a minimum fractional w-vertex cover y in G.
(3) For every odd cycle, delete the vertex with the smallest y value.

Computing vertex-stabilizers

The algorithm:
(1) Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
(2) Compute a minimum fractional w-vertex cover y in G.
(3) For every odd cycle, delete the vertex with the smallest y value.

Minimize number of odd cycles

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_{i}, C_{j} \in \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_{i}, C_{j} \in \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_{i}, C_{j} \in \mathscr{C}(\hat{x})$.

Furthermore, alternate rounding on C_{i}, C_{j} and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_{i}, C_{j} \in \mathscr{C}(\hat{x})$.

Furthermore, alternate rounding on C_{i}, C_{j} and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then there exists an $M(\hat{x})$-alternating path P which connects two odd cycles $C_{i}, C_{j} \in \mathscr{C}(\hat{x})$.

Furthermore, alternate rounding on C_{i}, C_{j} and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional w-vertex cover in G. If $|\mathscr{C}(\hat{x})|>\gamma(G)$, then G contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Minimize number of odd cycles

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(2)

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(2)

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(4) For every vertex $v \in V$ where $\hat{x}(\delta(v))=0$ and $y_{v}=0$, add the vertex v^{\prime} and edges $v v^{\prime}, v^{\prime} z$.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(4) For every vertex $v \in V$ where $\hat{x}(\delta(v))=0$ and $y_{v}=0$, add the vertex v^{\prime} and edges $v v^{\prime}, v^{\prime} z$.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(4) For every vertex $v \in V$ where $\hat{x}(\delta(v))=0$ and $y_{v}=0$, add the vertex v^{\prime} and edges $v v^{\prime}, v^{\prime} z$.
(5) Shrink every odd cycle $C_{i} \in \mathscr{C}(\hat{x})$ into a pseudonode i.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(4) For every vertex $v \in V$ where $\hat{x}(\delta(v))=0$ and $y_{v}=0$, add the vertex v^{\prime} and edges $v v^{\prime}, v^{\prime} z$.
(5) Shrink every odd cycle $C_{i} \in \mathscr{C}(\hat{x})$ into a pseudonode i.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(4) For every vertex $v \in V$ where $\hat{x}(\delta(v))=0$ and $y_{v}=0$, add the vertex v^{\prime} and edges $v v^{\prime}, v^{\prime} z$.
(5) Shrink every odd cycle $C_{i} \in \mathscr{C}(\hat{x})$ into a pseudonode i.

Minimize number of odd cycles

Construct the unweighted graph G^{\prime} as follows:
(1) Delete all non-tight edges.
(2) Add a vertex z.
(3) For every vertex $v \in V$ where $\hat{x}(\delta(v))=1$ and $y_{v}=0$, add edge $v z$.
(4) For every vertex $v \in V$ where $\hat{x}(\delta(v))=0$ and $y_{v}=0$, add the vertex v^{\prime} and edges $v v^{\prime}, v^{\prime} z$.
(5) Shrink every odd cycle $C_{i} \in \mathscr{C}(\hat{x})$ into a pseudonode i.

Lemma: \boldsymbol{M}^{\prime} is a maximum matching in G^{\prime} if and only if $|\mathscr{C}(\hat{x})|=\gamma(G)$.

Computing vertex-stabilizers

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \backslash S) \geq \frac{2}{3} \nu(G)$.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \backslash S) \geq \frac{2}{3} \nu(G)$.
Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \backslash S) \geq \frac{2}{3} \nu(G)$.
Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \backslash S) \geq \frac{2}{3} \nu(G)$.
Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \backslash S) \geq \frac{2}{3} \nu(G)$.
Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S. Moreover, $\nu(G \backslash S) \geq \frac{2}{3} \nu(G)$.

Proof: Stability - due to complementary slackness.

Optimality $-\gamma(G)$ is a lower bound on the size of a vertex-stabilizer.

Lower bound

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.
Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.
Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.
Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.
Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.
Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

Lower bound

Lemma: For any vertex $v, \gamma(G \backslash v) \geq \gamma(G)-1$.
Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.
Hard case: v does not lie in a cycle of $\mathscr{C}(\hat{x})$.

Can we do better?

Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$?

Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

For any subset $S \subseteq V$,

$$
\nu(G \backslash S) \leq 2=\frac{2}{3-\varepsilon} \nu(G)
$$

Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

For any subset $S \subseteq V$,

$$
\nu(G \backslash S) \leq 2=\frac{2}{3-\varepsilon} \nu(G)
$$

- Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

$$
\nu(G \backslash S)=\nu(G) ?
$$

Can we do better?

- Can we preserve more than $\frac{2}{3} \nu(G)$? No!

For any subset $S \subseteq V$,

$$
\nu(G \backslash S) \leq 2=\frac{2}{3-\varepsilon} \nu(G)
$$

- Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

$$
\nu(G \backslash S)=\nu(G) ?
$$

NP-complete!

Computing edge-stabilizers

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge $e, \gamma(G \backslash e) \geq \gamma(G)-2$.

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge $e, \gamma(G \backslash e) \geq \gamma(G)-2$.
Lower Bound: Every edge-stabilizer has size at least $\left\lceil\frac{\gamma(G)}{2}\right\rceil$.

Computing edge-stabilizers

- In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge $e, \gamma(G \backslash e) \geq \gamma(G)-2$.
Lower Bound: Every edge-stabilizer has size at least $\left\lceil\frac{\gamma(G)}{2}\right\rceil$.
Thm 4: There exists an $O(\Delta)$-approximation algorithm for the minimum edge-stabilizer problem.

Additional results

- Given a set of deals M, remove as few players as possible such that M is realizable as a stable outcome.
\rightarrow Find a minimum vertex-stabilizer S such that M is a maximum-weight matching in $G \backslash S$.
- A solution to this problem is called an M-vertex-stabilizer.

Thm [Ahmadian et al. '16]: If M is a maximum matching in an unweighted graph, then it is polytime solvable.

Thm 6: The problem is NP-hard on unweighted graphs. Moreover, no ($2-\varepsilon$)-approximation algorithm exists for any $\varepsilon>0$ assuming UGC.

Thm 7: The problem admits a 2 -approximation algorithm on weighted graphs. Furthermore, if M is a maximum-weight matching, then it is polytime solvable.

Thank you!

Appendix 1

Thm 2: Deciding whether a graph has a weight-preserving vertex-stabilizer is NP-complete.

Proof: Reduction from the independent set problem.
Construct the gadget graph G^{*} as follows:

G has an independent set of size k \Leftrightarrow
G^{*} has a weight-preserving vertex-stabilizer.

Appendix 2

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless $\mathbf{P}=\mathbf{N P}$.

Proof: Suppose we have an α-approximation algorithm. Set $\rho=\lceil\alpha\rceil$.

- If G has an independent set of size k, then OPT $\leq k$. Else, OPT $\geq(\rho+1) k$. \square

