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Matchings and w-vertex covers

• Let G = (V ,E ) be a graph with edge-weights w ∈ RE
≥0.

Def. A vector x ∈ RE is a fractional matching if it is a feasible solution
to

νf (G ) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0

}
.

Def. A vector y ∈ RV is a fractional w -vertex cover if it is a feasible
solution to

τf (G ) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E , y ≥ 0

}
.

• Denote ν(G ) as the value of a maximum-weight matching in G .

• By LP duality,

ν(G ) ≤ νf (G ) = τf (G ).
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Stable graphs

• There are graphs where ν(G ) < νf (G ).
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Def. A graph G is stable if ν(G ) = νf (G ).
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Stabilizers

Def. An edge-stabilizer is a subset F ⊂ E such that G \ F is stable.
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Finding small stabilizers

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

I Motivated by network bargaining games and cooperative matching
games.
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Network bargaining games

• [Kleinberg and Tardos ’08] Given an edge-weighted graph G = (V ,E )

I Every vertex represents a player.

I Every edge e represents a deal of value we .

• Every player can make a deal with at most 1 neighbour.

→ matching M

• When a deal is made, players split the value.

→ allocation y ∈ RV
≥0:

yu + yv = wuv ∀uv ∈ M
yu = 0 if u is M-exposed.

• An outcome is given by (M, y).
• An outcome is stable if yu + yv ≥ wuv for all uv ∈ E .
• A stable outcome is balanced if the deal values are “fairly” split.

A stable outcome exists ⇔ A balanced outcome exists ⇔ G is stable
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Cooperative matching games

• [Shapley and Shubik ’71] Let G = (V ,E ) be an edge-weighted graph.

Goal: Allocate the value ν(G ) among the vertices such that

I No subset S ⊆ V is incentivized to form a coalition to deviate∑
v∈S

yv ≥ ν(G [S ]) ∀S ⊆ V

I Such an allocation y is called stable.

• [Deng et al. ’99] proved that a stable allocation exists ⇔ G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some players Vertex-stabilizer

by blocking some deals Edge-stabilizer
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State of the art

Unweighted Graphs

• [Bock et al. ’15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2− ε) for any ε > 0 assuming UGC.

• They gave an O(ω)-approximation algorithm, where ω is the sparsity of
the graph.

• [Ahmadian et al. ’16, Ito et al. ’16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

• Stabilizing a graph via different operations:

I [Ito et al. ’16] Adding vertices/edges.

I [Chandrasekaran et al. ’16] Fractionally increasing edge weights.

• [Ahmadian et al ’16] Vertex-stabilizer with costs.

• Other variants [Mishra et al. ’11, Biró et al. ’12, Könemann et al. ’15].
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Unweighted vs. weighted graphs

• On unweighted graphs,

I For any minimum edge-stabilizer F , ν(G \ F ) = ν(G ).

I For any minimum vertex-stabilizer S , ν(G \ S) = ν(G ).

• This property does not hold on weighted graphs.
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Main results

Thm 1: There exists a polynomial time algorithm that computes a
minimum vertex-stabilizer S for a weighted graph G . Moreover,

ν(G \ S) ≥ 2

3
ν(G ).

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where
ν(G \ S) = ν(G ) is NP-complete.

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Thm 4: There exists an efficient O(∆)-approximation algorithm for the
minimum edge-stabilizer problem.
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Preliminaries

Thm [Balinski ’70]: A fractional matching x̂ in G is basic if and only if

1 x̂e ∈
{

0, 12 , 1
}

for every edge e; and

2 The edges e with x̂e = 1
2 induce vertex-disjoint odd cycles in G .

• Given a basic fractional matching x̂ in G , denote

I C (x̂) := {C1, . . . ,Cq} as the set of odd cycles induced by x̂e = 1
2

I M(x̂) := {e ∈ E : x̂e = 1}.

Def.
γ(G ) := min

x̂∈X
|C (x̂)|

where X is the set of basic maximum-weight fractional matchings in G .

I G is stable if and only if γ(G ) = 0.

• Let y be a minimum fractional w -vertex cover in G .

I An edge uv is tight if yu + yv = wuv .

I A path is tight if all its edges are tight.
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Preliminaries

• We will use the following 2 operations:

1 By complementing on F ⊆ E , we mean replacing x̂e by x̄e = 1− x̂e
for all e ∈ F .

2 By alternate rounding on C ∈ C (x̂) at vertex v , we mean

vC

Def. An alternating path is valid if it

I starts with an exposed vertex or a matched edge

I ends with an exposed vertex or a matched edge
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Computing vertex-stabilizers

The algorithm:

1 Compute a basic maximum-weight fractional matching x̂ in G with
γ(G ) odd cycles.

2 Compute a minimum fractional w -vertex cover y in G .

3 For every odd cycle, delete the vertex with the smallest y value.

×
× ×
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Minimize number of odd cycles

Goal: Given a weighted graph G , compute a basic maximum-weight
fractional matching x̂ such that |C (x̂)| = γ(G ).

Thm [Balas ’81]: Let x̂ be a basic maximum fractional matching in an
unweighted graph G . If |C (x̂)| > γ(G ), then there exists an
M(x̂)-alternating path P which connects two odd cycles Ci ,Cj ∈ C (x̂).

Ci Cj

P

Furthermore, alternate rounding on Ci ,Cj and complementing on P
produces a basic maximum fractional matching x̄ in G such that
C (x̄) ⊂ C (x̂).
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Minimize number of odd cycles

Thm 5: Let x̂ be a maximum-weight fractional matching and y be a
minimum fractional w -vertex cover in G . If |C (x̂)| > γ(G ), then G
contains at least one of the following:

yv = 0Ci yv = 0Ci

tight and valid P

Ci Cj

tight P

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching x̄ such
that C (x̄) ⊂ C (x̂).
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Minimize number of odd cycles

Construct the unweighted graph G ′ as follows:

1 Delete all non-tight edges.

2 Add a vertex z .

3 For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add edge vz .

4 For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the
vertex v ′ and edges vv ′, v ′z .

5 Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i .

z

u v

u′ v ′

G

M ′

Lemma: M ′ is a maximum matching in G ′ if and only if |C (x̂)| = γ(G ).
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Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S .
Moreover, ν(G \ S) ≥ 2

3ν(G ).

Proof: Stability - due to complementary slackness.
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Lower bound

Lemma: For any vertex v , γ(G \ v) ≥ γ(G )− 1.

Proof: Let x̂ be a maximum-weight fractional matching in G with γ(G )
odd cycles.
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Can we do better?

• Can we preserve more than 2
3ν(G )? No!
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Additional results

• Given a set of deals M, remove as few players as possible such that M
is realizable as a stable outcome.

→ Find a minimum vertex-stabilizer S such that
M is a maximum-weight matching in G \ S .

• A solution to this problem is called an M-vertex-stabilizer.

Thm [Ahmadian et al. ’16]: If M is a maximum matching in an
unweighted graph, then it is polytime solvable.

Thm 6: The problem is NP-hard on unweighted graphs. Moreover, no
(2− ε)-approximation algorithm exists for any ε > 0 assuming UGC.

Thm 7: The problem admits a 2-approximation algorithm on weighted
graphs. Furthermore, if M is a maximum-weight matching, then it is
polytime solvable.



Thank you!



Appendix 1

Thm 2: Deciding whether a graph has a weight-preserving
vertex-stabilizer is NP-complete.

Proof: Reduction from the independent set problem.

Construct the gadget graph G∗ as follows:

v1 v2
. . .

vk
. . .

vn

v ′
1 v ′

2 v ′
k v ′

n

b1 b2 bk

. . .

G

we = 4

we = 2

we = 1

G has an independent set of size k
⇔

G∗ has a weight-preserving vertex-stabilizer. �



Appendix 2

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Proof: Suppose we have an α-approximation algorithm. Set ρ = dαe.

v1 v2
. . .

vk
. . .

. . .

vn

v ′
1 v ′

2 v ′
k v ′

n

b1 b2 bk

K2ρk+1 K2ρk+1 K2ρk+1

G

... ρk copies
we = 4

we = 2

we = 1

• If G has an independent set of size k , then OPT ≤ k.
• Else, OPT ≥ (ρ+ 1)k. �


