Stabilizing Weighted Graphs

Zhuan Khye Koh Laura Sanità

Combinatorics and Optimization University of Waterloo, Canada

July 3, 2018

• Let G = (V, E) be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

• Let G = (V, E) be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^E$ is a fractional matching if it is a feasible solution to

$$\nu_f(G) := \max\left\{w^\top x : x(\delta(v)) \le 1 \ \forall v \in V, x \ge 0\right\}$$

• Let G = (V, E) be a graph with edge-weights $w \in \mathbb{R}^{E}_{\geq 0}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$u_f(G) := \max\left\{w^\top x : x(\delta(v)) \le 1 \ \forall v \in V, x \ge 0\right\}$$

Def. A vector $y \in \mathbb{R}^{V}$ is a fractional *w*-vertex cover if it is a feasible solution to

$$\tau_f(G) := \min\left\{\mathbb{1}^\top y : y_u + y_v \ge w_{uv} \; \forall uv \in E, y \ge 0\right\}.$$

• Let G = (V, E) be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$u_f(G) := \max\left\{w^\top x : x(\delta(v)) \le 1 \ \forall v \in V, x \ge 0\right\}$$

Def. A vector $y \in \mathbb{R}^{V}$ is a fractional *w*-vertex cover if it is a feasible solution to

$$\tau_f(G) := \min\left\{\mathbb{1}^\top y : y_u + y_v \ge w_{uv} \; \forall uv \in E, y \ge 0\right\}.$$

• Denote $\nu(G)$ as the value of a maximum-weight matching in G.

• Let G = (V, E) be a graph with edge-weights $w \in \mathbb{R}_{\geq 0}^{E}$.

Def. A vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to

$$u_f(G) := \max\left\{w^\top x : x(\delta(v)) \le 1 \ \forall v \in V, x \ge 0\right\}$$

Def. A vector $y \in \mathbb{R}^{V}$ is a fractional *w*-vertex cover if it is a feasible solution to

$$\tau_f(G) := \min\left\{\mathbb{1}^\top y : y_u + y_v \ge w_{uv} \; \forall uv \in E, y \ge 0\right\}.$$

• Denote $\nu(G)$ as the value of a maximum-weight matching in G.

• By LP duality,

$$\nu(G) \leq \nu_f(G) = \tau_f(G).$$

• There are graphs where $\nu(G) < \nu_f(G)$.

• There are graphs where $\nu(G) < \nu_f(G)$.

• There are graphs where $\nu(G) < \nu_f(G)$.

Def. A graph G is stable if $\nu(G) = \nu_f(G)$.

• There are graphs where $\nu(G) < \nu_f(G)$.

Def. A graph G is stable if $\nu(G) = \nu_f(G)$.

• There are graphs where $\nu(G) < \nu_f(G)$.

Def. A graph G is stable if $\nu(G) = \nu_f(G)$.

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \setminus S$ is stable.

Def. An edge-stabilizer is a subset $F \subset E$ such that $G \setminus F$ is stable.

Def. A vertex-stabilizer is a subset $S \subseteq V$ such that $G \setminus S$ is stable.

• This gives rise to the following two optimization problems:

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer

Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer

Find an edge-stabilizer of minimum cardinality.

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer

Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer

Find an edge-stabilizer of minimum cardinality.

• Why are stable graphs interesting?

• This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer

Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer

Find an edge-stabilizer of minimum cardinality.

- Why are stable graphs interesting?
 - Motivated by network bargaining games and cooperative matching games.

• [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e .

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e .
- Every player can make a deal with at most 1 neighbour.

 \rightarrow matching *M*

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e .
- Every player can make a deal with at most 1 neighbour.

 \rightarrow matching *M*

• When a deal is made, players split the value.

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e .
- Every player can make a deal with at most 1 neighbour.

 \rightarrow matching *M*

• When a deal is made, players split the value.

• An outcome is given by (M, y).

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e .
- Every player can make a deal with at most 1 neighbour.

 \rightarrow matching *M*

• When a deal is made, players split the value.

An outcome is given by (M, y).
An outcome is stable if y_u + y_v ≥ w_{uv} for all uv ∈ E.

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge *e* represents a deal of value w_e .
- Every player can make a deal with at most 1 neighbour.

 \rightarrow matching *M*

• When a deal is made, players split the value.

- An outcome is given by (M, y).
- An outcome is stable if $y_u + y_v \ge w_{uv}$ for all $uv \in E$.
- A stable outcome is balanced if the deal values are "fairly" split.

- [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
 - Every vertex represents a player.
 - Every edge e represents a deal of value w_e .
- Every player can make a deal with at most 1 neighbour.

 \rightarrow matching *M*

• When a deal is made, players split the value.

- An outcome is given by (M, y).
- An outcome is stable if $y_u + y_v \ge w_{uv}$ for all $uv \in E$.
- A stable outcome is balanced if the deal values are "fairly" split.

A stable outcome exists \Leftrightarrow A balanced outcome exists \Leftrightarrow G is stable

• [Shapley and Shubik '71] Let G = (V, E) be an edge-weighted graph.

• [Shapley and Shubik '71] Let G = (V, E) be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

▶ No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{v \in S} y_v \geq \nu(G[S]) \ \forall S \subseteq V$$

• [Shapley and Shubik '71] Let G = (V, E) be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

▶ No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{v \in S} y_v \geq \nu(G[S]) \ \forall S \subseteq V$$

Such an allocation y is called stable.
Cooperative matching games

• [Shapley and Shubik '71] Let G = (V, E) be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

▶ No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{v \in S} y_v \geq \nu(G[S]) \ \forall S \subseteq V$$

Such an allocation y is called stable.

• [Deng et al. '99] proved that a stable allocation exists \Leftrightarrow G is stable

Cooperative matching games

• [Shapley and Shubik '71] Let G = (V, E) be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

▶ No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{\nu \in S} y_{\nu} \geq \nu(G[S]) \ \forall S \subseteq V$$

- Such an allocation y is called stable.
- [Deng et al. '99] proved that a stable allocation exists \Leftrightarrow G is stable

Can we stabilize unstable games through minimal changes in the underlying network?

Cooperative matching games

• [Shapley and Shubik '71] Let G = (V, E) be an edge-weighted graph.

Goal: Allocate the value $\nu(G)$ among the vertices such that

▶ No subset $S \subseteq V$ is incentivized to form a coalition to deviate

$$\sum_{v \in S} y_v \geq \nu(G[S]) \ \forall S \subseteq V$$

- Such an allocation y is called stable.
- [Deng et al. '99] proved that a stable allocation exists $\Leftrightarrow G$ is stable

Can we stabilize unstable games through minimal changes in the underlying network?

e.g. by blocking some players by blocking some deals Vertex-stabilizer

Edge-stabilizer

Unweighted Graphs

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

• They gave an $O(\omega)$ -approximation algorithm, where ω is the sparsity of the graph.

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

• They gave an $O(\omega)$ -approximation algorithm, where ω is the sparsity of the graph.

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

• They gave an $O(\omega)$ -approximation algorithm, where ω is the sparsity of the graph.

- Stabilizing a graph via different operations:
 - [Ito et al. '16] Adding vertices/edges.
 - ► [Chandrasekaran et al. '16] Fractionally increasing edge weights.

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

• They gave an $O(\omega)$ -approximation algorithm, where ω is the sparsity of the graph.

- Stabilizing a graph via different operations:
 - [Ito et al. '16] Adding vertices/edges.
 - ► [Chandrasekaran et al. '16] Fractionally increasing edge weights.
- [Ahmadian et al '16] Vertex-stabilizer with costs.

Unweighted Graphs

• [Bock et al. '15] Finding a minimum edge-stabilizer is hard to approximate within a factor of $(2 - \varepsilon)$ for any $\varepsilon > 0$ assuming UGC.

• They gave an $O(\omega)$ -approximation algorithm, where ω is the sparsity of the graph.

- Stabilizing a graph via different operations:
 - [Ito et al. '16] Adding vertices/edges.
 - ► [Chandrasekaran et al. '16] Fractionally increasing edge weights.
- [Ahmadian et al '16] Vertex-stabilizer with costs.
- Other variants [Mishra et al. '11, Biró et al. '12, Könemann et al. '15].

- On unweighted graphs,
 - For any minimum edge-stabilizer F, $\nu(G \setminus F) = \nu(G)$.
 - For any minimum vertex-stabilizer *S*, $\nu(G \setminus S) = \nu(G)$.

- On unweighted graphs,
 - For any minimum edge-stabilizer F, $\nu(G \setminus F) = \nu(G)$.
 - For any minimum vertex-stabilizer *S*, $\nu(G \setminus S) = \nu(G)$.
- This property does not hold on weighted graphs.

- On unweighted graphs,
 - For any minimum edge-stabilizer F, $\nu(G \setminus F) = \nu(G)$.
 - For any minimum vertex-stabilizer *S*, $\nu(G \setminus S) = \nu(G)$.
- This property does not hold on weighted graphs.

Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover,

$$u(G \setminus S) \geq \frac{2}{3}\nu(G).$$

Thm 2: Deciding whether a graph *G* has a vertex-stabilizer *S* where $\nu(G \setminus S) = \nu(G)$ is **NP**-complete.

Main results

Thm 1: There exists a polynomial time algorithm that computes a minimum vertex-stabilizer S for a weighted graph G. Moreover,

$$u(G \setminus S) \geq \frac{2}{3}\nu(G).$$

Thm 2: Deciding whether a graph *G* has a vertex-stabilizer *S* where $\nu(G \setminus S) = \nu(G)$ is **NP**-complete.

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless P = NP.

Thm 4: There exists an efficient $O(\Delta)$ -approximation algorithm for the minimum edge-stabilizer problem.

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if (1) $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and

2 The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if (1) $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and

2 The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

• Given a basic fractional matching \hat{x} in G, denote

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and **2** The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

• Given a basic fractional matching \hat{x} in G, denote

• $\mathscr{C}(\hat{x}) := \{C_1, \ldots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and **2** The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

- Given a basic fractional matching \hat{x} in G, denote
 - $\mathscr{C}(\hat{x}) := \{C_1, \ldots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$
 - $M(\hat{x}) := \{ e \in E : \hat{x}_e = 1 \}.$

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and **2** The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

• Given a basic fractional matching \hat{x} in G, denote

• $\mathscr{C}(\hat{x}) := \{C_1, \dots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$

•
$$M(\hat{x}) := \{ e \in E : \hat{x}_e = 1 \}$$

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathscr{C}(\hat{x})|$$

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and **2** The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

• Given a basic fractional matching \hat{x} in G, denote

• $\mathscr{C}(\hat{x}) := \{C_1, \dots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$

•
$$M(\hat{x}) := \{ e \in E : \hat{x}_e = 1 \}$$

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathscr{C}(\hat{x})|$$

where \mathcal{X} is the set of basic maximum-weight fractional matchings in G.

• G is stable if and only if $\gamma(G) = 0$.

Thm [Balinski '70]: A fractional matching \hat{x} in *G* is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge *e*; and **2** The edges *e* with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in *G*.

• Given a basic fractional matching \hat{x} in G, denote

• $\mathscr{C}(\hat{x}) := \{C_1, \dots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$

•
$$M(\hat{x}) := \{ e \in E : \hat{x}_e = 1 \}$$

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathscr{C}(\hat{x})|$$

- G is stable if and only if $\gamma(G) = 0$.
- Let y be a minimum fractional w-vertex cover in G.

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge e; and **2** The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

• Given a basic fractional matching \hat{x} in G, denote

• $\mathscr{C}(\hat{x}) := \{C_1, \dots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$

•
$$M(\hat{x}) := \{ e \in E : \hat{x}_e = 1 \}$$

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathscr{C}(\hat{x})|$$

- G is stable if and only if $\gamma(G) = 0$.
- Let y be a minimum fractional w-vertex cover in G.
 - An edge uv is tight if $y_u + y_v = w_{uv}$.

Thm [Balinski '70]: A fractional matching \hat{x} in G is basic if and only if **1** $\hat{x}_e \in \{0, \frac{1}{2}, 1\}$ for every edge e; and **2** The edges e with $\hat{x}_e = \frac{1}{2}$ induce vertex-disjoint odd cycles in G.

• Given a basic fractional matching \hat{x} in G, denote

• $\mathscr{C}(\hat{x}) := \{C_1, \dots, C_q\}$ as the set of odd cycles induced by $\hat{x}_e = \frac{1}{2}$

•
$$M(\hat{x}) := \{ e \in E : \hat{x}_e = 1 \}$$

Def.

$$\gamma(G) := \min_{\hat{x} \in \mathcal{X}} |\mathscr{C}(\hat{x})|$$

- G is stable if and only if $\gamma(G) = 0$.
- Let y be a minimum fractional w-vertex cover in G.
 - An edge uv is tight if $y_u + y_v = w_{uv}$.
 - A path is tight if all its edges are tight.

• We will use the following 2 operations:

- We will use the following 2 operations:
 - By complementing on F ⊆ E, we mean replacing x̂_e by x̄_e = 1 − x̂_e for all e ∈ F.

- We will use the following 2 operations:
 - By complementing on F ⊆ E, we mean replacing x̂_e by x̄_e = 1 − x̂_e for all e ∈ F.

- We will use the following 2 operations:
 - **1** By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 \hat{x}_e$ for all $e \in F$.

- We will use the following 2 operations:
 - **1** By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 \hat{x}_e$ for all $e \in F$.

2 By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

- We will use the following 2 operations:
 - **1** By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 \hat{x}_e$ for all $e \in F$.

2 By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

- We will use the following 2 operations:
 - By complementing on F ⊆ E, we mean replacing x̂_e by x̄_e = 1 − x̂_e for all e ∈ F.

2 By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

Preliminaries

- We will use the following 2 operations:
 - **1** By complementing on $F \subseteq E$, we mean replacing \hat{x}_e by $\bar{x}_e = 1 \hat{x}_e$ for all $e \in F$.

2 By alternate rounding on $C \in \mathscr{C}(\hat{x})$ at vertex v, we mean

Def. An alternating path is valid if it

- starts with an exposed vertex or a matched edge
- ends with an exposed vertex or a matched edge

The algorithm:

1 Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.

The algorithm:

1 Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.

- **1** Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
- **2** Compute a minimum fractional w-vertex cover y in G.

- **1** Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
- **2** Compute a minimum fractional w-vertex cover y in G.
- **3** For every odd cycle, delete the vertex with the smallest *y* value.

- **1** Compute a basic maximum-weight fractional matching \hat{x} in G with $\gamma(G)$ odd cycles.
- **2** Compute a minimum fractional w-vertex cover y in G.
- \bigcirc For every odd cycle, delete the vertex with the smallest y value.

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})| = \gamma(G)$.

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$ -alternating path *P* which connects two odd cycles $C_i, C_i \in \mathscr{C}(\hat{x})$.

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$ -alternating path *P* which connects two odd cycles $C_i, C_i \in \mathscr{C}(\hat{x})$.

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$ -alternating path *P* which connects two odd cycles $C_i, C_i \in \mathscr{C}(\hat{x})$.

Furthermore, alternate rounding on C_i , C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$ -alternating path *P* which connects two odd cycles $C_i, C_i \in \mathscr{C}(\hat{x})$.

Furthermore, alternate rounding on C_i , C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Goal: Given a weighted graph G, compute a basic maximum-weight fractional matching \hat{x} such that $|\mathscr{C}(\hat{x})| = \gamma(G)$.

Thm [Balas '81]: Let \hat{x} be a basic maximum fractional matching in an unweighted graph *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then there exists an $M(\hat{x})$ -alternating path *P* which connects two odd cycles $C_i, C_i \in \mathscr{C}(\hat{x})$.

Furthermore, alternate rounding on C_i , C_j and complementing on P produces a basic maximum fractional matching \bar{x} in G such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional *w*-vertex cover in *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then *G* contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional *w*-vertex cover in *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then *G* contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Thm 5: Let \hat{x} be a maximum-weight fractional matching and y be a minimum fractional *w*-vertex cover in *G*. If $|\mathscr{C}(\hat{x})| > \gamma(G)$, then *G* contains at least one of the following:

Furthermore, alternate rounding on the odd cycles and complementing on the path produces a basic maximum-weight fractional matching \bar{x} such that $\mathscr{C}(\bar{x}) \subset \mathscr{C}(\hat{x})$.

Construct the unweighted graph G' as follows:

1 Delete all non-tight edges.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.

Construct the unweighted graph G' as follows:

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.

(Z)

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- ④ For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', v'z.

- 1 Delete all non-tight edges.
- 2 Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- ④ For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', v'z.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- ④ For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', v'z.
- **5** Shrink every odd cycle $C_i \in \mathscr{C}(\hat{x})$ into a pseudonode *i*.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- ④ For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', v'z.
- **5** Shrink every odd cycle $C_i \in \mathscr{C}(\hat{x})$ into a pseudonode *i*.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- ④ For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', v'z.
- **5** Shrink every odd cycle $C_i \in \mathscr{C}(\hat{x})$ into a pseudonode *i*.

- 1 Delete all non-tight edges.
- **2** Add a vertex z.
- **3** For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 1$ and $y_v = 0$, add edge vz.
- ④ For every vertex $v \in V$ where $\hat{x}(\delta(v)) = 0$ and $y_v = 0$, add the vertex v' and edges vv', v'z.
- **5** Shrink every odd cycle $C_i \in \mathscr{C}(\hat{x})$ into a pseudonode *i*.

Lemma: M' is a maximum matching in G' if and only if $|\mathscr{C}(\hat{x})| = \gamma(G)$.
Thm 1: The algorithm computes a minimum vertex-stabilizer *S*. Moreover, $\nu(G \setminus S) \ge \frac{2}{3}\nu(G)$.

Thm 1: The algorithm computes a minimum vertex-stabilizer *S*. Moreover, $\nu(G \setminus S) \ge \frac{2}{3}\nu(G)$.

Thm 1: The algorithm computes a minimum vertex-stabilizer *S*. Moreover, $\nu(G \setminus S) \ge \frac{2}{3}\nu(G)$.

Thm 1: The algorithm computes a minimum vertex-stabilizer *S*. Moreover, $\nu(G \setminus S) \ge \frac{2}{3}\nu(G)$.

Thm 1: The algorithm computes a minimum vertex-stabilizer *S*. Moreover, $\nu(G \setminus S) \ge \frac{2}{3}\nu(G)$.

Thm 1: The algorithm computes a minimum vertex-stabilizer *S*. Moreover, $\nu(G \setminus S) \ge \frac{2}{3}\nu(G)$.

Proof: Stability - due to complementary slackness.

<u>Optimality</u> - $\gamma(G)$ is a lower bound on the size of a vertex-stabilizer.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

Lemma: For any vertex ν , $\gamma(G \setminus \nu) \geq \gamma(G) - 1$.

Proof: Let \hat{x} be a maximum-weight fractional matching in G with $\gamma(G)$ odd cycles.

Easy case: v lies in a cycle of $\mathscr{C}(\hat{x})$.

<u>Hard case</u>: v does not lie in a cycle of $\mathscr{C}(\hat{x})$.

• Can we preserve more than $\frac{2}{3}\nu(G)$?

• Can we preserve more than $\frac{2}{3}\nu(G)$? No!

• Can we preserve more than $\frac{2}{3}\nu(G)$? No!

• Can we preserve more than $\frac{2}{3}\nu(G)$? No!

For any subset $S \subseteq V$,

$$u(G \setminus S) \leq 2 = \frac{2}{3-\varepsilon}\nu(G)$$

• Can we preserve more than $\frac{2}{3}\nu(G)$? No!

For any subset $S \subseteq V$,

$$\nu(G \setminus S) \leq 2 = \frac{2}{3-\varepsilon}\nu(G)$$

• Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

$$\nu(G \setminus S) = \nu(G)?$$

• Can we preserve more than $\frac{2}{3}\nu(G)$? No!

For any subset $S \subseteq V$,

$$\nu(G \setminus S) \leq 2 = \frac{2}{3-\varepsilon}\nu(G)$$

• Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

$$\nu(G \setminus S) = \nu(G)?$$

NP-complete!

Lemma: For any edge e, $\gamma(G \setminus e) \ge \gamma(G) - 2$.

• In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge e, $\gamma(G \setminus e) \ge \gamma(G) - 2$.

Lower Bound: Every edge-stabilizer has size at least $\left\lceil \frac{\gamma(G)}{2} \right\rceil$.

• In constrast to vertex-stabilizers, $\gamma(G)$ is not a lower bound.

Lemma: For any edge e, $\gamma(G \setminus e) \ge \gamma(G) - 2$.

Lower Bound: Every edge-stabilizer has size at least $\left\lceil \frac{\gamma(G)}{2} \right\rceil$.

Thm 4: There exists an $O(\Delta)$ -approximation algorithm for the minimum edge-stabilizer problem.

Additional results

• Given a set of deals M, remove as few players as possible such that M is realizable as a stable outcome.

 \rightarrow Find a minimum vertex-stabilizer S such that M is a maximum-weight matching in $G \setminus S$.

• A solution to this problem is called an *M*-vertex-stabilizer.

Thm [Ahmadian et al. '16]: If M is a maximum matching in an unweighted graph, then it is polytime solvable.

Thm 6: The problem is **NP**-hard on unweighted graphs. Moreover, no $(2 - \varepsilon)$ -approximation algorithm exists for any $\varepsilon > 0$ assuming UGC.

Thm 7: The problem admits a 2-approximation algorithm on weighted graphs. Furthermore, if M is a maximum-weight matching, then it is polytime solvable.

Thank you!

Appendix 1

Thm 2: Deciding whether a graph has a weight-preserving vertex-stabilizer is **NP**-complete.

Proof: Reduction from the independent set problem. Construct the gadget graph G^* as follows:

G has an independent set of size k \Leftrightarrow G^* has a weight-preserving vertex-stabilizer. \Box

Appendix 2

Thm 3: There is no constant factor approximation for the minimum edge-stabilizer problem unless $\mathbf{P} = \mathbf{NP}$.

Proof: Suppose we have an α -approximation algorithm. Set $\rho = \lceil \alpha \rceil$.

• If G has an independent set of size k, then $OPT \le k$. Else, $OPT \ge (\rho + 1)k$. \Box