Stabilizing Weighted Graphs

Zhuan Khye Koh Laura Sanita

Combinatorics and Optimization
University of Waterloo, Canada

July 3, 2018

Matchings and w-vertex covers

Matchings and w-vertex covers

e Let G = (V,E) be a graph with edge-weights w € R%.

Matchings and w-vertex covers

e Let G = (V,E) be a graph with edge-weights w € R%.

Def. A vector x € RE is a fractional matching if it is a feasible solution
to
ve(G) := max {WTX :x(6(v)) <1Vve V,x>0}.

Matchings and w-vertex covers

e Let G = (V,E) be a graph with edge-weights w € R%.

Def. A vector x € RE is a fractional matching if it is a feasible solution
g

to
ve(G) = max{WTx :x(6(v)) <1Vve V,x>0}.

Def. A vector y € RY is a fractional w-vertex cover if it is a feasible
solution to

7(G) :==min {17y : y, + y, > wy, Yuv € E,y > 0}.

Matchings and w-vertex covers

e Let G = (V,E) be a graph with edge-weights w € R%.
Def. A vector x € RE is a fractional matching if it is a feasible solution

to
ve(G) = max{WTx :x(6(v)) <1Vve V,x>0}.

Def. A vector y € RY is a fractional w-vertex cover if it is a feasible
solution to

7(G) :==min {17y : y, + y, > wy, Yuv € E,y > 0}.

e Denote v(G) as the value of a maximum-weight matching in G.

Matchings and w-vertex covers

e Let G = (V,E) be a graph with edge-weights w € R%.

Def. A vector x € RE is a fractional matching if it is a feasible solution
g

to
ve(G) = max{WTx :x(6(v)) <1Vve V,x>0}.

Def. A vector y € RY is a fractional w-vertex cover if it is a feasible
solution to

7(G) :==min {17y : y, + y, > wy, Yuv € E,y > 0}.

e Denote v(G) as the value of a maximum-weight matching in G.

e By LP duality,
v(G) < ve(G) = 74(G).

Stable graphs

Stable graphs

e There are graphs where v(G) < v¢(G).

Stable graphs

e There are graphs where v(G) < v¢(G).

Stable graphs

e There are graphs where v(G) < v¢(G).

1 1
@) O
1 1 1 1
O
v(G)=1 ve(G) =15

Def. A graph G is stable if v(G) = v (G).

Stable graphs

e There are graphs where v(G) < v¢(G).

1 1
@) O
1 1 1 1
O
v(G)=1 ve(G) =15

Def. A graph G is stable if v(G) = v (G).

1

Stable graphs

e There are graphs where v(G) < v¢(G).

1 1
@) O
1 1 1 1
O
v(G)=1 ve(G) =15

Def. A graph G is stable if v(G) = v (G).

05 1 05

Stabilizers

Stabilizers

Def. An edge-stabilizer is a subset F C E such that G\ F is stable.

Stabilizers

Def. An edge-stabilizer is a subset F C E such that G\ F is stable.

Stabilizers

Def. An edge-stabilizer is a subset F C E such that G\ F is stable.

Def. A vertex-stabilizer is a subset S C V such that G \ S is stable.

Stabilizers

Def. An edge-stabilizer is a subset F C E such that G\ F is stable.

Finding small stabilizers

Finding small stabilizers

e This gives rise to the following two optimization problems:

Finding small stabilizers

e This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

Finding small stabilizers

e This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

e Why are stable graphs interesting?

Finding small stabilizers

e This gives rise to the following two optimization problems:

Minimum Vertex-Stabilizer
Find a vertex-stabilizer of minimum cardinality.

Minimum Edge-Stabilizer
Find an edge-stabilizer of minimum cardinality.

e Why are stable graphs interesting?

» Motivated by network bargaining games and cooperative matching
games.

Network bargaining games

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a

» Every edge e represents a of value w.

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a
» Every edge e represents a of value w.

e Every player can make a deal with at most 1 neighbour.

— matching M

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a
» Every edge e represents a of value w.

e Every player can make a deal with at most 1 neighbour.
— matching M
e When a deal is made, players split the value.

— allocation y € R¥01
Yoty =wy, YuveM
yu = 0 if uis M-exposed.

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a
» Every edge e represents a of value w.

e Every player can make a deal with at most 1 neighbour.
— matching M
e When a deal is made, players split the value.

— allocation y € R¥01
Yoty =wy, YuveM
yu = 0 if uis M-exposed.

e An is given by (M, y).

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a
» Every edge e represents a of value w.

e Every player can make a deal with at most 1 neighbour.
— matching M
e When a deal is made, players split the value.

— allocation y € R¥01
Yoty =wy, YuveM
yu = 0 if uis M-exposed.

e An is given by (M, y).
e An outcome is if yo +y, > wy, forall uv € E.

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a
» Every edge e represents a of value w.

e Every player can make a deal with at most 1 neighbour.
— matching M
e When a deal is made, players split the value.

— allocation y € R¥01
Yoty =wy, YuveM
yu = 0 if uis M-exposed.

e An is given by (M, y).
e An outcome is if yo +y, > wy, forall uv € E.
e A stable outcome is if the deal values are “fairly” split.

Network bargaining games

e [Kleinberg and Tardos '08] Given an edge-weighted graph G = (V, E)
> Every vertex represents a
» Every edge e represents a of value w.

e Every player can make a deal with at most 1 neighbour.
— matching M
e When a deal is made, players split the value.

— allocation y € R;O:
Yoty =wy, YuveM
yu = 0 if uis M-exposed.

e An is given by (M, y).
e An outcome is if yo +y, > wy, forall uv € E.
e A stable outcome is if the deal values are “fairly” split.

A stable outcome exists < A balanced outcome exists < G is stable

Cooperative matching games

Cooperative matching games

e [Shapley and Shubik '71] Let G = (V/, E) be an edge-weighted graph.

Cooperative matching games

e [Shapley and Shubik '71] Let G = (V/, E) be an edge-weighted graph.
Goal: Allocate the value v(G) among the vertices such that
» No subset S C V is incentivized to form a to deviate

S w = v(GIS]) VSTV

veS

Cooperative matching games

e [Shapley and Shubik '71] Let G = (V/, E) be an edge-weighted graph.
Goal: Allocate the value v(G) among the vertices such that
» No subset S C V is incentivized to form a to deviate

S w = v(GIS]) VSTV

veS

» Such an allocation y is called

Cooperative matching games

e [Shapley and Shubik '71] Let G = (V/, E) be an edge-weighted graph.
Goal: Allocate the value v(G) among the vertices such that
» No subset S C V is incentivized to form a to deviate

S w = v(GIS]) VSTV

veS

» Such an allocation y is called

e [Deng et al. '99] proved that a stable allocation exists < G is stable

Cooperative matching games

e [Shapley and Shubik '71] Let G = (V/, E) be an edge-weighted graph.
Goal: Allocate the value v(G) among the vertices such that
» No subset S C V is incentivized to form a to deviate

S w = v(GIS]) VSTV

veS
» Such an allocation y is called
e [Deng et al. '99] proved that a stable allocation exists < G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?

Cooperative matching games

e [Shapley and Shubik '71] Let G = (V/, E) be an edge-weighted graph.
Goal: Allocate the value v(G) among the vertices such that
» No subset S C V is incentivized to form a to deviate

S w = v(GIS]) VSTV

veS

» Such an allocation y is called

e [Deng et al. '99] proved that a stable allocation exists < G is stable

Can we stabilize unstable games through minimal changes in the
underlying network?
e.g. by blocking some players ‘Vertex—stabilizer‘

by blocking some deals Edge-stabilizer

State of the art

State of the art

Unweighted Graphs

State of the art

Unweighted Graphs

e [Bock et al. '15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2 — ¢) for any € > 0 assuming UGC.

State of the art

Unweighted Graphs

e [Bock et al. '15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2 — ¢) for any € > 0 assuming UGC.

e They gave an O(w)-approximation algorithm, where w is the sparsity of
the graph.

State of the art

Unweighted Graphs

e [Bock et al. '15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2 — ¢) for any € > 0 assuming UGC.

e They gave an O(w)-approximation algorithm, where w is the sparsity of
the graph.

e [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

State of the art

Unweighted Graphs

e [Bock et al. '15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2 — ¢) for any € > 0 assuming UGC.

e They gave an O(w)-approximation algorithm, where w is the sparsity of
the graph.

e [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer
is polynomial time solvable.
e Stabilizing a graph via different operations:

> [Ito et al. '16] Adding vertices/edges.

» [Chandrasekaran et al. '16] Fractionally increasing edge weights.

State of the art

Unweighted Graphs

e [Bock et al. '15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2 — ¢) for any € > 0 assuming UGC.

e They gave an O(w)-approximation algorithm, where w is the sparsity of
the graph.

e [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

e Stabilizing a graph via different operations:
> [lto et al. '16] Adding vertices/edges.

» [Chandrasekaran et al. '16] Fractionally increasing edge weights.

e [Ahmadian et al '16] Vertex-stabilizer with costs.

State of the art

Unweighted Graphs

e [Bock et al. '15] Finding a minimum edge-stabilizer is hard to
approximate within a factor of (2 — ¢) for any € > 0 assuming UGC.

e They gave an O(w)-approximation algorithm, where w is the sparsity of
the graph.

e [Ahmadian et al. '16, Ito et al. '16] Finding a minimum vertex-stabilizer
is polynomial time solvable.

e Stabilizing a graph via different operations:

> [lto et al. '16] Adding vertices/edges.

» [Chandrasekaran et al. '16] Fractionally increasing edge weights.
e [Ahmadian et al '16] Vertex-stabilizer with costs.

e Other variants [Mishra et al. '11, Biré et al. '12, Kénemann et al. '15].

Unweighted vs. weighted graphs

Unweighted vs. weighted graphs

e On unweighted graphs,
» For any minimum edge-stabilizer F, v(G \ F) = v(G).
» For any minimum vertex-stabilizer S, v(G \ S) = v(G).

Unweighted vs. weighted graphs

e On unweighted graphs,
» For any minimum edge-stabilizer F, v(G \ F) = v(G).
» For any minimum vertex-stabilizer S, v(G \ S) = v(G).

e This property does not hold on weighted graphs.

Unweighted vs. weighted graphs

e On unweighted graphs,
» For any minimum edge-stabilizer F, v(G \ F) = v(G).
» For any minimum vertex-stabilizer S, v(G \ S) = v(G).

e This property does not hold on weighted graphs.

4 4

v(G)=5 vi(G) =6

Main results

Main results

Thm 1: There exists a polynomial time algorithm that computes a
minimum vertex-stabilizer S for a weighted graph G. Moreover,

v(G\S) =

Wl N

v(G).

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where
v(G\ S) =v(G) is NP-complete.

Main results

Thm 1: There exists a polynomial time algorithm that computes a
minimum vertex-stabilizer S for a weighted graph G. Moreover,

v(G\S) =

Wl N

v(G).

Thm 2: Deciding whether a graph G has a vertex-stabilizer S where
v(G\ S) =v(G) is NP-complete.

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Thm 4: There exists an efficient O(A)-approximation algorithm for the
minimum edge-stabilizer problem.

Preliminaries

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote
> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and
® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote

> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3
> M(R):={e€ E: % =1}

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote
> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3
> M(R):={e€ E: % =1}

Def.
7(6) := min [£(%),

xeX

where X is the set of basic maximum-weight fractional matchings in G.

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote
> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3
> M(R):={e€ E: % =1}

Def.
7(6) := min [£(%),

2eX
where X is the set of basic maximum-weight fractional matchings in G.
» G is stable if and only if ¥(G) = 0.

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote
> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3
> M(R):={e€ E: % =1}

Def.
7(6) = min |[€(X)|
where X is the set of basic maximum-weight fractional matchings in G.
» G is stable if and only if ¥(G) = 0.

e Let y be a minimum fractional w-vertex cover in G.

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote
> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3
> M(R):={e€ E: % =1}

Def.
7(6) := min [£(%),

2eX
where X is the set of basic maximum-weight fractional matchings in G.
» G is stable if and only if ¥(G) = 0.

e Let y be a minimum fractional w-vertex cover in G.

» An edge wv is tight if y, + y, = wy,.

Preliminaries

Thm [Balinski "70]: A fractional matching X in G is basic if and only if
® % € {0,1,1} for every edge e; and

® The edges e with X, = % induce vertex-disjoint odd cycles in G.

e Given a basic fractional matching X in G, denote
> ¢(%) :={C,...,Cq} as the set of odd cycles induced by % = 3
> M(R):={e€ E: % =1}

Def.
7(6) := min [£(%),

2eX
where X is the set of basic maximum-weight fractional matchings in G.
» G is stable if and only if ¥(G) = 0.

e Let y be a minimum fractional w-vertex cover in G.
» An edge wv is tight if y, + y, = wy,.
> A path is tight if all its edges are tight.

Preliminaries

Preliminaries

e We will use the following 2 operations:

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

O———— O)————————— O)————)

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

Ommn()———————— O en()————————— (O)

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

Ommn()———————— O en()————————— (O)

@® By alternate rounding on C € €(X) at vertex v, we mean

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

Ommn()———————— O en()————————— (O)

@® By alternate rounding on C € €(X) at vertex v, we mean

O

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

Ommn()———————— O en()————————— (O)

@® By alternate rounding on C € €(X) at vertex v, we mean

Preliminaries

e We will use the following 2 operations:

@ By complementing on F C E, we mean replacing Xe by X. =1 — X.
forall e € F.

Ommn()———————— O en()————————— (O)

@® By alternate rounding on C € €(X) at vertex v, we mean

Def. An alternating path is valid if it
» starts with an exposed vertex or a matched edge

» ends with an exposed vertex or a matched edge

Computing vertex-stabilizers

Computing vertex-stabilizers

The algorithm:

Computing vertex-stabilizers

The algorithm:

@ Compute a basic maximum-weight fractional matching X in G with
~(G) odd cycles.

Computing vertex-stabilizers

The algorithm:

@ Compute a basic maximum-weight fractional matching X in G with
~(G) odd cycles.

Computing vertex-stabilizers

The algorithm:

@ Compute a basic maximum-weight fractional matching X in G with
~(G) odd cycles.

® Compute a minimum fractional w-vertex cover y in G.

Computing vertex-stabilizers

The algorithm:

@ Compute a basic maximum-weight fractional matching X in G with
~(G) odd cycles.

® Compute a minimum fractional w-vertex cover y in G.
© For every odd cycle, delete the vertex with the smallest y value.

@)
®)

Computing vertex-stabilizers

The algorithm:

@ Compute a basic maximum-weight fractional matching X in G with
~(G) odd cycles.

® Compute a minimum fractional w-vertex cover y in G.
© For every odd cycle, delete the vertex with the smallest y value.

@)
®)

Minimize number of odd cycles

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight
fractional matching X such that |4(%)| = v(G).

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight
fractional matching X such that |4(%)| = v(G).

Thm [Balas '81]: Let X be a basic maximum fractional matching in an
unweighted graph G. If |€(X)| > «v(G), then there exists an
M(%)-alternating path P which connects two odd cycles C;, ; € €(X).

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight
fractional matching X such that |4(%)| = v(G).

Thm [Balas '81]: Let X be a basic maximum fractional matching in an

unweighted graph G. If |€(X)| > «v(G), then there exists an
M(%)-alternating path P which connects two odd cycles C;, ; € €(X).

©) @)

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight
fractional matching X such that |4(%)| = v(G).

Thm [Balas '81]: Let X be a basic maximum fractional matching in an

unweighted graph G. If |€(X)| > «v(G), then there exists an
M(%)-alternating path P which connects two odd cycles C;, ; € €(X).

©) @)

©) @)

Furthermore, alternate rounding on C;, G; and complementing on P
produces a basic maximum fractional matching X in G such that

(%) C €(%).

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight
fractional matching X such that |4(%)| = v(G).

Thm [Balas '81]: Let X be a basic maximum fractional matching in an
unweighted graph G. If |€(X)| > «v(G), then there exists an
M(%)-alternating path P which connects two odd cycles C;, ; € €(X).

Furthermore, alternate rounding on C;, G; and complementing on P
produces a basic maximum fractional matching X in G such that

(%) C €(%).

Minimize number of odd cycles

Goal: Given a weighted graph G, compute a basic maximum-weight
fractional matching X such that |4(%)| = v(G).

Thm [Balas '81]: Let X be a basic maximum fractional matching in an
unweighted graph G. If |€(X)| > «v(G), then there exists an
M(%)-alternating path P which connects two odd cycles C;, ; € €(X).

Furthermore, alternate rounding on C;, G; and complementing on P
produces a basic maximum fractional matching X in G such that

(%) C €(%).

Minimize number of odd cycles

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

@)
©)

G Ow=0

@)
@)

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

o o O tight and valid P

—_—
G Ow=0 G O——— OO y, = 0

@) @)
@) ©)

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

@) O

0O 0O tight and valid P
—_—
G Ow=0 G OO y, = 0
O O
O O
. O
= tight P

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

@) O

0O 0O tight and valid P
—_—
G Ow=0 G OO y, = 0
O O
O O
o tight P ~

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching X such
that €(x) C €(%).

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

tight and valid P

w =0 w =20

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching X such
that €(x) C €(%).

Minimize number of odd cycles

Thm 5: Let X be a maximum-weight fractional matching and y be a
minimum fractional w-vertex cover in G. If |€(X)| > v(G), then G
contains at least one of the following:

tight and valid P

w =0 w =20

Furthermore, alternate rounding on the odd cycles and complementing on
the path produces a basic maximum-weight fractional matching X such
that €(x) C €(%).

Minimize number of odd cycles

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

O For every vertex v € V where %(6(v)) =0 and y, =0, add the
vertex v/ and edges w/, v'z.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

O For every vertex v € V where %(6(v)) =0 and y, =0, add the
vertex v/ and edges w/, v'z.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

O For every vertex v € V where %(6(v)) =0 and y, =0, add the
vertex v/ and edges w/, v'z.

@ Shrink every odd cycle C; € ¥(X) into a pseudonode i.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

O For every vertex v € V where %(6(v)) =0 and y, =0, add the
vertex v/ and edges w/, v'z.

@ Shrink every odd cycle C; € ¥(X) into a pseudonode i.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

O For every vertex v € V where %(6(v)) =0 and y, =0, add the
vertex v/ and edges w/, v'z.

@ Shrink every odd cycle C; € ¥(X) into a pseudonode i.

Minimize number of odd cycles

Construct the unweighted graph G’ as follows:
@ Delete all non-tight edges.
® Add a vertex z.
© For every vertex v € V where X(6(v)) =1 and y, = 0, add edge vz.

O For every vertex v € V where %(6(v)) =0 and y, =0, add the
vertex v/ and edges w/, v'z.

@ Shrink every odd cycle C; € ¥(X) into a pseudonode i.

Computing vertex-stabilizers

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S.
Moreover, v(G \ S) > 2v(G).

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S.
Moreover, v(G \ S) > 2v(G).

Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S.
Moreover, v(G \ S) > 2v(G).

Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S.
Moreover, v(G \ S) > 2v(G).

Proof: Stability - due to complementary slackness.

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S.
Moreover, v(G \ S) > 2v(G).

Proof: Stability - due to complementary slackness.

2
2

Computing vertex-stabilizers

Thm 1: The algorithm computes a minimum vertex-stabilizer S.
Moreover, v(G \ S) > 2v(G).

Proof: Stability - due to complementary slackness.

2

Optimality - v(G) is a lower bound on the size of a
vertex-stabilizer.

Lower bound

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Proof: Let X be a maximum-weight fractional matching in G with +(G)
odd cycles.

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Proof: Let X be a maximum-weight fractional matching in G with +(G)

odd cycles.
O
O
O l O/O
o O
O P O O

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Proof: Let X be a maximum-weight fractional matching in G with +(G)

odd cycles.
O
O
Ov l O/O
o O
O P O O

Easy case: v lies in a cycle of €(X).

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Proof: Let X be a maximum-weight fractional matching in G with +(G)

odd cycles.
O
0 l o
o O
O P O O

Easy case: v lies in a cycle of €(X).

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Proof: Let X be a maximum-weight fractional matching in G with +(G)

odd cycles.
I~
O
P O O
O\O % Y @)
- ° S

@)

Easy case: v lies in a cycle of €(X).

Lower bound

Lemma: For any vertex v, (G \ v) > ~(G) — 1.

Proof: Let X be a maximum-weight fractional matching in G with +(G)

odd cycles.
O v
O
O o/o
o O
O P O O

Easy case: v lies in a cycle of €(X).

Hard case: v does not lie in a cycle of €(X).

Can we do better?

Can we do better?

e Can we preserve more than 3(G)?

Can we do better?

e Can we preserve more than 21/(G)? No!

Can we do better?

e Can we preserve more than 21/(G)? No!

Can we do better?

e Can we preserve more than 21/(G)? No!

For any subset S C V,

2
—€

¥(G\$) <2 = =—¥(G)

Can we do better?

e Can we preserve more than 21/(G)? No!

For any subset S C V,

2
—€

¥(G\$) <2 = =—¥(G)

e Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.

v(G\S)=v(G)?

Can we do better?

e Can we preserve more than 21/(G)? No!

For any subset S C V,

2
—€

¥(G\$) <2 = =—¥(G)

e Can we decide if G has a weight-preserving vertex-stabilizer S, i.e.
v(G\S)=v(G)?

NP-complete!

Computing edge-stabilizers

Computing edge-stabilizers

e In constrast to vertex-stabilizers, v(G) is not a lower bound.

Computing edge-stabilizers

e In constrast to vertex-stabilizers, v(G) is not a lower bound.

Computing edge-stabilizers

e In constrast to vertex-stabilizers, v(G) is not a lower bound.

Computing edge-stabilizers

e In constrast to vertex-stabilizers, y(G) is not a lower bound.

Computing edge-stabilizers

e In constrast to vertex-stabilizers, y(G) is not a lower bound.

Lemma: For any edge e, v(G \ €) > v(G) — 2.

Computing edge-stabilizers

e In constrast to vertex-stabilizers, y(G) is not a lower bound.

Lemma: For any edge e, v(G \ €) > v(G) — 2.

Lower Bound: Every edge-stabilizer has size at least {@l

Computing edge-stabilizers

e In constrast to vertex-stabilizers, v(G) is not a lower bound.

Lemma: For any edge e, v(G \ €) > v(G) — 2.
Lower Bound: Every edge-stabilizer has size at least {@l

Thm 4: There exists an O(A)-approximation algorithm for the minimum
edge-stabilizer problem.

Additional results

e Given a set of deals M, remove as few players as possible such that M
is realizable as a stable outcome.

— Find a minimum vertex-stabilizer S such that
M is a maximum-weight matching in G \ S.

e A solution to this problem is called an M-vertex-stabilizer.

Thm [Ahmadian et al. '16]: If M is a maximum matching in an
unweighted graph, then it is polytime solvable.

Thm 6: The problem is NP-hard on unweighted graphs. Moreover, no
(2 — &)-approximation algorithm exists for any € > 0 assuming UGC.

Thm 7: The problem admits a 2-approximation algorithm on weighted
graphs. Furthermore, if M is a maximum-weight matching, then it is
polytime solvable.

Thank youl!

Appendix 1

Thm 2: Deciding whether a graph has a weight-preserving
vertex-stabilizer is NP-complete.

Proof: Reduction from the independent set problem.

Construct the gadget graph G* as follows:

G has an independent set of size k
=
G* has a weight-preserving vertex-stabilizer. [

Appendix 2

Thm 3: There is no constant factor approximation for the minimum
edge-stabilizer problem unless P = NP.

Proof: Suppose we have an a-approximation algorithm. Set p = [«].

e If G has an independent set of size k, then OPT < k.
Else, OPT > (p+ 1)k. O

